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Chapter 1

Preface

Statistics may be defined as the art of making decisions based on incomplete in-
formation or data. The process of making those decisions is known as statistical
inference. The emphasis in this course will be on statistical inference; in par-
ticular, estimation and hypothesis testing. There are other aspects surrounding
this process, such as sampling and exploratory data analysis, which we will also
touch upon in this course. We will also emphasize the acquisition of statistical
reasoning skills. Thus, the main thrust of the course will not be the mere appli-
cation of formulae to bodies of data, but the reasoning processes that accompany
the involvement of statistics at the various stages of real world statistical appli-
cations: from the formulation of questions and hypotheses, experimental design,
sampling and data collection, data analysis, to the presentation of results. We
will use a combination of lectures, discussions, activities and problem sets which
expose the students to the various issues that arise in statistical investigations.
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Chapter 2

Introduction to Statistical
Inference

Statistical inference refers to the process of going from information gained by
studying a portion of a population, called a sample, to new knowledge about
the population. There are two types of statistical inferences that we will look
at in this course: hypothesis testing, or tests of significance, and estima-
tion. We begin with a type of significance testing known as a permutation
or randomization test. We illustrate this procedure by analyzing the data set
presented in Activity #1: An Age discrimination Case?

2.1 Activity #1: An Age Discrimination Case?

The data set presented on page 9 is Display 1.1 on page 5 of Statistics in Ac-
tion by Watkins, Cobb and Scheaffer [GWCS04]. The data were provided by
the Envelope Division of the Westvaco Corporation (a pulp and paper company
originally based in West Virginia and which was purchased by the Meade Cor-
poration in January of 2002) to the lawyers of Robert Martin. Martin was laid
off by Westvaco in 1991 when the company decided to downsize. The company
went through 5 rounds of layoffs. Martin was laid off in the second round and
he was 54 years old then. He claimed that he had been laid off because of his
age. He sued the company later that year alleging age discrimination. Your
goal for this activity is to determine whether the data provided show that the
suit had any merit.

The rows in the table represent the 50 employees in the envelope division
of Westavaco before the layoffs (Robert Martin is in row 44). The Pay–column
shows an “H” if the worker is payed hourly, and an “S” if the worker had a
salary. The last column gives the age of each worker as of the first of January
1991 (shortly before the layoffs). The “RIF” column shows a “0” if the worker
was not laid off during downsizing, a “1” is the worker was laid off in the first
round of downsizing, a “2” if laid off in the second round, and so on.

7



8 CHAPTER 2. INTRODUCTION TO STATISTICAL INFERENCE

For this activity, you will work in groups. Each team will study the data
provided in search for patterns, if any, that might reflect age discrimination
on the part of Westvaco management. Based on the analysis that your team
makes of the data, your team will take a position on the whether there was age
discrimination, or whether the data do not present enough evidence to support
Martin’s claim.

It was mentioned in the Preface that Statistics may be defined as the art of
making decisions based on incomplete information. The decision we are asked
to make in Activity #1 is whether Westvaco did discriminate based on age
when laying off workers during its downsizing period in 1991. The information
provided by the data set is incomplete because it does not state what criteria
the company used to select the workers for layoffs. A quick examination of the
RIF and Age columns in the table may lead us to believe that, on average,
workers that were laid off were older than those that were not. For instance, a
quick calculation1 of the average age for workers on rows with RIF bigger than
or equal to 1, i.e., workers that were laid off in one of the rounds, yields

mean age laid off workers = 50;

while the average age of those that were kept is

mean age employed = 46.

The decision we need to make then is whether a difference of 4 in the mean age
of those workers who were fired versus those who remained is sufficient evidence
for us to conclude that the company discriminated against older workers.

Example 2.1.1 (A Permutation Test) In this example we perform a per-
mutation test for the Westvaco data for the hourly workers involved in the
second round of layoffs. The question at hand is to decide whether Wastvaco
based its selection of the three hourly workers that were laid off in that round
on the workers’ age. The ages of the 10 workers are

25, 38, 56, 48, 55, 64, 55, 55, 33, 35,

the underlined values being the ages of the 3 workers that were laid off in that
round. The average age of the three laid off workers is obtained in R by typing

mean(c(55,64,55))

or 58. Note that the R function c() concatenates values in parentheses to form
a vector or one–dimensional array.

Observe that, by contrast, the corresponding average age of the workers that
were not laid off in the second round was

mean(c(25,38,56,48,55,33,35))

1See Appendix A for a discussion of how these calculations were done using R
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10 CHAPTER 2. INTRODUCTION TO STATISTICAL INFERENCE

or 41. There is, hence, quite a dramatic difference in mean ages of the two
groups.

Suppose, for the sake of argument, that the company truly did not use
age as a criterion for selection. There might have been other criteria that the
company used, but the data set provided does not indicate other options. In
the absence of more information, if the company did not take into account age
in the selection process, then we may assume that choice of the three workers
was done purely at random regarding age. What is the chance that a random
selection of three workers out of the 10 will yield a sample with a mean of 58
or higher? To estimate this chance, assuming the selection is done at random
(meaning that each individual in the group of 10 has the same chance of being
selected as any other worker), we may replicate the process of selecting the 3
worker many times. We compute the average of the selected ages each time.
The proportion of times that the average is 58, or higher, gives us an estimate of
the likelihood, or probability, that the company would have selected for layoff
three workers whose average is 58 or higher.

Since there are only 10 values that we would like to randomize, or permute,
the simulation of the random selection process can be done easily by hand. For
instance, we can write the 10 ages in cards and, after shuffling, randomly select
three of them and record the ages. These simulations were done in class by
12 groups, each one generating 10 averages for their outcomes. The simulation
results can be stored in an R vector called Xbar. A histogram of the generated
values is shown in Figure 2.1.1. We would like to compute the proportion of
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Figure 2.1.1: Sampling Distribution for Class Simulations in Activity #1

times that the average age in the samples is 58 or higher. In order to do this
based on the histogram in Figure 2.1.1, it will helpful to refine the “breaks” in
the histogram. The hist() function in R has an option that allows us to set
the brakes for the bins in the histogram. This can be done by defining a vector
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continuing the breaks; for instance,

b <- seq(30,60,by=1)

generates a sequence of values from 30 to 60 in steps of 1. We can then generate
a new histogram of the sampling distribution in the simulations by typing

hist(Xbar, breaks = b)

The new histogram is shown in Figure 2.1.2 We can then see in Figure 2.1.2 that
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Figure 2.1.2: Sampling Distribution for Class Simulations in Activity #1

7 of the 120 random selections of three ages yielded an average of 58 or higher.
This give a proportion of about 0.0583 or 5.83%. Thus, there is about a 5.83%
chance that, if the company did a random selection of hourly workers in the
second round for layoffs, an average of age of 58 or higher would have turned
up. Some people might not consider this to be a low probability. However,
in the following section we will see how to refine the simulation procedure by
performing thousands of repetitions using R. This will yield a better estimate
for that probability and we will see in a later section that it is in fact 5%. Thus,
assuming that age had nothing to do with the selection of workers to be laid
off in Westvaco’s second round of layoffs in 1991, it is highly unlikely that the
company selected the three workers that it actually fired. Thus, we can argue
that age might have played a prominent role in the decision process.
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2.2 Permutation Tests

The simulations that we performed in class for Activity #1 dealing with the
10 hourly workers at Westvaco involved in the second round of layoffs can be
easily automated in R by running a script of commands stored in a .R extension
file. The code is given in Appendix A.4. The key to the code is the sample()
function in R. If the ages of the 10 workers are stored in a vector called hourly2,
typing

s <- sample(hourly2, 3, replace = F)

selects a random sample of size 3, without replacement, from the 10 ages. Typing
mean(s) then gives the mean age of the three workers which were selected. We
can repeat the sampling procedures as many times as we wish by using the
for (i in 1:NRep) loop structure in R that will set up a loop running from
NRep repetitions. The code in Appendix A.4 yields a vector Xbar containing the
means of NRep random samples of size 3 drawn from ages of the 10 hourly paid
workers involved in the second round of layoffs at Westvaco in 1991. Figure
2.2.3 shows the histogram for NRep= 1000 repetitions. 2.1.1.

Histogram of Xbar

Xbar

F
re

qu
en

cy

30 35 40 45 50 55 60

0
50

10
0

15
0

Figure 2.2.3: Sampling Distribution for Mean Age in 1000 Simulations

We can use the histogram in Figure 2.2.3 to estimate the proportion of sam-
ples that gave a mean age of 58 or higher as we did in Example 2.1.1. However,
we can also use the programming capabilities in R to define a function that
would compute for us give Xbar and the observed value of 58. The code defin-
ing the pHat() function can be found in Appendix A.5. An R script containing
the code, called pHatFunction.R, may be downloaded from the course webpage.
After sourcing this script file in R, we can type

p_hat <- pHat(Xbar,58)
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which yields 0.045. This is an estimate of the probability that, assuming that
the company selected 3 workers from the 10 involved in the second round of
layoffs purely at random, the average age would be 58 or above. Thus, there is
less than 5% chance that the company would have selected three workers whose
age averages 58 or higher had the selection been purely random. The portion
of the data dealing with hourly workers involved in the second rounds of layoffs
leads us to believe that the company may have considered the age of the workers
when deciding who to lay off.

The procedure used above in the analysis of the data for the 10 hourly
workers involved in the second rounds of layoffs at Wesvaco in 1991 is an example
of a Test of Significance known as a Permutation Test. We present here
the general outline of the procedure so we can apply it in similar situations.

1. Begin with a Question

We always begin by formulating a question we are trying to answer, or a
problem we are trying to solve. In the examples we have just done, the
question at hand is: Did Westvaco discriminate against older workers?

2. Look at the Data

Do a quick analysis of the data (usually a exploratory analysis) to see if the
data show trends that are relevant in answering the question. In Example
2.1.1, for instance, we looked that the 10 hourly paid workers involved in
the second round of layoffs and found that the average age of the three laid
off workers was 58, while that for the workers that remained was 41. This
seems to suggest that the company was biased towards workers older than
55. This analysis also gives as the test statistics that we will be using
in the significance test; namely, the average age of the workers sleeted for
laid off.

3. Set up a Null Hypothesis or Model

Based on the exploratory analysis of the data done previously, we surmise
that, perhaps, the company discriminated based on age. Do the data
actually support that claim? Suppose that, in fact, the company did
not consider age when selecting workers for layoff. We may assume, for
instance, that the company did the selection at random. What are the
chances that we would see a selection of three workers whose average age
is 58 or higher? If the chances are small (say 5%, or 1%), then it is highly
unlikely that the company selected the workers that it did, if the selection
was done purely at random. Hence, the data would not lend credence to
the statement that the selection was done purely at random. Thus, the
company has some explaining to do.

The statement that the “selection was done at random” is an example
of a null hypothesis or a null model. Usually denoted by Ho, a null
hypothesis provide a model which can be used to estimate the chances that
the test statistic will attain the observed value or more extreme values
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under repeated occurrences of an experiment. In this case, the random
experiment consists of selected three ages out of the ten at random.

4. Estimate the p–value

The p–value is the likelihood, or probability, that, under the assumption
that the null hypothesis is true, the test statistic will take on the observed
value or more extreme values. A small p–value is evidence that the data do
not support the null hypothesis, and therefore we have reason to believe
that the selection was not done purely at random. We then say that the
data are statistically significant. A large p–value, on the other hand,
is indication that our claim that the company discriminated against older
workers is not supported by the data. The reasoning here is that, even if
the selection had been done at random, observed values as high as then
one we saw are likely. Thus, the company could have selected the workers
that it did select for layoff even if the selection was done without regard
to age.

The p–value can be estimated by replicating the selection process, under
the assumption that the null hypothesis is true, many times and computing
the proportion of the number of times that the test statistic is at least as
large as the observed value.

5. Statistical significance

The results of our simulations yielded and estimate of the p–value of about
0.045, or less than 5%. We therefore concluded, based on this analysis,
that the data for the 10 hourly workers involved in the second rounds of
layoffs at Westvaco in 1991 are statistically significant. Therefore, there
is evidence that the company discriminated against older workers in that
round.

2.3 Activity #2: Comparing two treatments

In the second activity of the course, students are presented with the following
hypothetical situation:

Question

Suppose that a new treatment for certain disease has been devised and you
claim that the new treatment is better than the existing one. How would you
go about supporting your claim?

Discussion

1. Suppose that you also find twenty people that have the disease. Discuss
how you would go about designing an experiment that will allow you to
answer the question as to which treatment is more effective. Which factors
should be considered? What are the variables in question here?
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2. Discuss why randomization is important in the experimental design that
you set up in 1 above.

3. Suppose that you randomly divide the 20 people into two groups of equal
size. Group T receives the new treatment and Group E receives the ex-
isting treatment. Of these 20 people, 7 from Group T recover and 5 from
Group E recover. What do you conclude about the effectiveness of the two
treatments? Do you feel that you have been given enough information to
draw an accurate conclusion? Why or why not? (Answer these questions
before continuing)

Simulations

You may have concluded that the new treatment is better since it yielded a
higher recovery rate. However, this may have occurred simply by chance. In
other words, maybe there is really no difference in the effectiveness of the two
treatments, and that regardless of which treatment any person in the group got,
12 out of the 20 people would have recovered anyways. Given this, what is the
probability that you would observe the results you got regarding the effectiveness
of the new treatment? i.e., what is the probability that 7 (or more) out of 10 in
the new treatment group recover, given that 12 out of 20 will recover regardless
of the treatment?

Your task for this activity is to simulate this experiment using playing cards
in order to estimate the probability that, under the assumption that there is no
difference between the treatments, 7 or more out of the treatment group will
recover. To increase the accuracy of your results, be sure to run the simulation
many times. Each team in the class will run simulations, and we will pool the
results together.

Conclusions

Based on the results of the simulations, what can you conclude about the ef-
fectiveness of the two treatments? Is it possible that the initial findings could
simply have resulted by chance? Would you have obtained these same results if
there was no difference between the treatments?

We present a statistical significance test of the hypothetical data presented
in Activity #2. We follow the procedure outlined in the analysis of the Westvaco
data given in the previous secion.

1. Begin with a Question

Is there any difference in the effectiveness of the two treatments? In
particular, do the data support the claim that the new treatment is more
effective than the existing one?

2. Look at the Data
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We were given that 7 out of 10 subjects in Group T recovered. This yields
a proportion of 7/10, or a 70% recovery rate. On the other hand, the
recovery rate for Group E was 50%. The test statistic that we will use
for this test is the proportion of subjects in the new treatment group that
recover. Denote it by p.

3. Set up a Null Hypothesis

Ho in this case is the statement that there is no difference between the
treatments; that is, 12 subjects out of the the twenty involved in the study
would have recovered regardless of the treatment they were given.

4. Estimate the p–value

In this case the p–value is the probability that, under the assumptions
that there is no difference between the treatments, 7 or more subjects in
the treatment group will recover. Given the information that the data
came from a randomized comparative experiment, and the fact that the
null hypothesis implies that 12 people of the 20 will recover regardless of
which group they are put in, we can set up a replication process using
plying cards, for instance. Use a deck of 12 black cards and 8 read cards
to model those subject who recover and those who do not, respectively.
Shuffling the cards and picking 10 at random will simulation the random
selection of subjects to Group T. Count the number of black cards out of
the 10. This will be the value of the test statistic for that particular run.
Perform many of these replications and determine the proportion of those
that showed seven or more recovered in the treatment group. This will
yield an estimate of the p–value.

The class performed 149 replications. Out of those, 49 showed 7 or more
recoveries in the treatment group. Thus, 49/149, or about 0.33.

5. Statistical significance

The p–value is about 33%, which is quite big. Hence, the data are not
statistically significant. We cannot therefore, based on the data, conclude
that the new treatment is better than the old one.

We will see in the next section that the actual p–value is about 32.5%.



Chapter 3

Introduction to Probability

In the previous chapter we introduced the notion of a p–value as the measure of
likelihood, or probability, that, under the assumption that the null hypothesis in
a test of significance is true, we would see an observed value for a test statistic,
or more extreme values, in repetitions of of a random experiment. We saw how
to estimate the p–value by repeating an experiment many times (e.g., repeated
sampling in the Westvaco data analysis, or repeated randomization of groups
of subjects in a randomized comparative experiment). We then counted the
number of times that the simulations yielded an outcome with a test statistic
value as high, or higher, than the value observed in the data. The proportion of
those times over the total number of replications then yields an estimate for the
p–value. The idea behind this approximation is the frequency interpretation
of probability as a long term ratio of occurrences of a given outcome. In this
chapter we give a more formal introduction to the theory of probabilities with
the goal of computing p–values, which we estimated through simulations in the
previous chapter, through the use of probability models. We will also intro-
duce the very important concepts of random variables and their probability
distributions.

3.1 Basic Notions in Probability

3.1.1 Equal likelihood models

A random experiment is a process or observation, which can be repeated indefi-
nitely under the same conditions, and whose outcomes cannot be predicted with
certainty before the experiment is performed. For instance, tossing a coin is a
random experiment with two possible outcomes: heads (H) or tails (T). Before
the toss, we cannot predict with certainty which of the two outcomes we will
get. We can, however, make some assumptions that will allow us to measure
the likelihood of a given event. This measure of likelihood is an example of a
probability function, P , on the set of outcomes of an experiment. For in-
stance, we may assume that the two outcomes, H or T, are equality likely. It

17
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then follows that
P (H) = P (T ). (3.1)

We assume that P takes on real values between 0 and 1. A value of 1 indicates
that the event will certainly happen and a value of 0 means that the event will
not happen. Any fraction in between 0 or 1 gives a measure of the likelihood of
the event.

If we also assume that each toss of the coin will produce either a head or a
tail. We can write this as

P (H or T) = 1, (3.2)

indicating that we are absolutely sure that we will get either a head or a tail
after the toss. Finally, we can also assume that each toss cannot yield both a
head or a tail simultaneously (we say that H and T are mutually exclusive
events); hence, we can also say that

P (H or T) = P (H) + P (T ). (3.3)

Combining equation (3.3) with (3.2) and the equal likelihood assumption in
(3.1) yields that

2P (H) = P (H) + p(H) = P (H) + P (T ) = 1,

from which we get that

P (H) =
1
2
.

Consequently, we also have that P (T ) = 1/2. This is the probability model for
the toss of a fair coin. Each outcome has a 50% chance of occurring.

In general, the equal likelihood model for an experiment with N equally
likely and mutually exclusive possible outcomes yields a probability of

1
N

for each outcome.

Example 3.1.1 (Hourly workers in 2nd round of layoffs at Westvaco)
Consider the experiment of selecting at random, and without replacement, three
ages from those of the 10 hourly paid workers involved in the second round of
layoffs at Westvaco in 1991 (see data set for Activity #1 on page 9). The null
hypothesis that the company did the selection purely at random is equivalent
to an equal likelihood assumption; that is, each sample of 3 ages out of the 10
ages:

25, 38, 56, 48, 55, 64, 55, 55, 33, 35, (3.4)

has the same chance of being chosen as any other group of 3. If we can compute
the number, N , of all such outcomes, the probability of each outcome would be
1/N .

To compute the number, N , of all possible samples of 3 ages out of the 10
given in (3.4), we may proceed as follows:
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• In each sample of three ages, there are 10 choices for the first one. Once the
first choice has been made, since we are sampling without replacement,
there are 9 choices for the second are, and 8 choices for the third age.
There is then a total of

10 · 9 · 8 = 720.

• However, we have over counted by quite a bit. For instance, the samples
{25, 38, 56} and {38, 25, 56} are really the same sample, but are counted
as two different ones in the previous count. In fact, there are

3 · 2 · 1 = 6

such repetitions for each sample of three. Thus, the over counting is 6–
fold. Hence, the number, N , of all possible samples of size three from the
10 ages in (3.4) is

N =
720
6

= 120.

Hence the probability of selecting each sample of size 3 out of the 10 ages in
(3.4) is

1
120

or about 0.83%.

Observe that the number N computed in the previous example can be writ-
ten as

N =
10 · 9 · 8
3 · 2 · 1

=
10!

3! · 7!
,

where the factorial of a positive integer n is defined by

n! = n · (n− 1) · · · 2 · 1.

For positive integers n and k, with k 6 n, the expression

n!
k!(n− k)!

,

with the understanding that 0! = 1, counts the number of ways of choosing k
objects out of n when the order in which the objects are chosen does not matter.
These are also known as combinations of k objects out of n. We denote the
number of combinations of k objects out of n by(

n

k

)
,

read “n choose k,” and call it the (n, k)–binomial coefficient. In R, the
(n, k)–binomial coefficient is computed by typing

choose(n,k).

Type choose(10,3) in R to see that you indeed get 120.
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3.1.2 Random Variables

The set of all possible outcomes of a random experiment is called the sample
space for that experiment. For example, the collection of all samples of 3
ages out of the 10 in (3.4) is the sample space for the experiment consisting of
selecting three ages at random and without replacement. A simpler example
is provided by flipping a coin three times in a row. The sample space, for this
experiment consists of all triples of heads, H, and tails, T:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT


Sample Space (3.5)

Most of the times we are not interested in the actual elements of a sam-
ple space. We are more interested in numerical information derived from the
samples. In the example of the hourly paid workers at Westvaco, for instance,
we were interested in the average of the three ages, the test statistics. A test
statistic yields a numerical value from each sample and it therefore defines a
real valued function on the sample spaces.

Definition 3.1.2 (Random Variable) A real valued function, X, defined on
the sample space of an experiment is called a random variable. A random
variable may also be defined as a numerical outcome of a random experiment
whose value cannot be determined with certainty. However, we can compute
the probability that the random variable X takes on a given value or range of
values.

Example 3.1.3 Toss a fair coin three times in a row. The sample space for
this experiment is displayed in equation (3.5)

By the equal likelihood model implied in the “fair coin” assumption, each
element in the sample space has probability 1/8.

Next, define a random variable, X, on the sample space given in (3.5) by

X = number of heads in the outcome.

Then, X can take on the values 0, 1, 2 or 3. Using the fact that each element
in the sample space has probability 1/8, we can compute the probability that
X takes on any of its values. We get

P (X = 0) = 1/8

since the outcome TTT in the sample space is the only one with no heads in it.
Similarly, we get

P (X = 1) = 3/8
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since the event (X = 1) consists of the three outcomes HTT, THT and TTH.
Continuing in this fashion, we obtain

P (X = k) =


1/8 if k = 0;
3/8 if k = 1;
3/8 if k = 2;
1/8 if k = 3.

(3.6)

The expression in equation (3.6) gives the probability distribution of the
random variable X. It is a function which give the probabilities that X takes
on a given value or range of values. The graph of this function is shown in
Figure 3.1.1. Notice that all the probabilities add up to 1. Observe that X

x

P

1

1 2 3

r r r r

Figure 3.1.1: Probability Distribution of X

can take only a discrete set of values {0, 1, 2, 3}; that is, X cannot take on
values in between those. This makes X into a discrete random variable.
Random variables can also be continuous. For instance, measurements having
to do with time, height, weight, pressure are all on done on a continuous scale,
meaning that probabilities of ranges of measurements between any two distinct
values are non–zero.

Example 3.1.4 Consider the combinations of 3 ages out of the 10 in (3.4). In
R, we can find all the elements in this sample space as follows:

• Define a vector, hourly2, containing the 10 ages.

• The R statement

combn(hourly2,3)

produces a two–dimensional array containing combinations of 3 ages out
of the 10 ages in hourly2. We can store the array in a matrix which we
denote by C by typing
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C <- combn(hourly2,3)

The columns of the matrix C are the combinations. To pick out the first
column, for instance, type

C[,1].

This yields

[1] 25 38 56,

which are the first three ages in (3.4). The function t() in R will transpose
a matrix; that is, it yields a matrix whose rows are the columns of the
original matrix, and vice versa. Type t(C) to get all the 120 combinations
of three ages out of the 10 ages of the hourly paid workers involved in the
second round of layoffs.

Let X denote the mean value of the samples of size 3 drawn from the 10
ages in (3.4). Then, X defines a random variable whose values can be stored in
a vector Xbar by the R commands

Xbar <- array(dim = 120)
for (i in 1:120) Xbar[i] <- mean(C[,i])

The frequency distribution of the variable X is pictured in Figure 3.1.2.
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Figure 3.1.2: Frequency Distribution for X
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Using the histogram in Figure 3.1.2 and the fact that each element in the
sample space has probability 1/120, we can make the following probability cal-
culations

P (30 6 X 6 33) =
3

120
= 0.025,

or
P (45 6 X < 46) =

12
120

= 0.1,

or
P (33 < X < 35) = 0.

The fact that we got a probability of zero for mean ages strictly in between 33
and 35 tells us that X behaves more like a discrete distribution, even though we
think of ages is a population (measured in time units) as a continuous variable.
The reason for the discreteness of the variable in this example has to do with
the fact that there are finitely many elements in the sample space.

We can compute the probability of the event (X > 58) using the function
pHat defined in Appendix A.5 to get that

P (X > 58) = 0.05.

This is the exact p-value for the Westvaco test of significance that we performed
on the portion of the Westvaco data consisting of the ten hourly paid workers
involved in the second round of layoffs.

3.2 Cumulative Distribution Function

Sometimes it is convenient to talk about the cumulative distribution func-
tion of a random variable; especially when dealing with continuous random
variables.

Definition 3.2.1 (Cumulative Distribution Function) Given a random vari-
able X, the cumulative distribution function of X, denoted by F

X
, is a real

valued function defined by

F
X

(x) = P (X 6 x) for all x ∈ R.

Example 3.2.2 Let X denote the number of heads in three consecutive tosses
of a fair coin. We have seen that X has a probability distribution given by

P (X = k) =


1/8 if k = 0;
3/8 if k = 1;
3/8 if k = 2;
1/8 if k = 3.

(3.7)

We may compute the cumulative distribution function, F
X

(x) = P (X 6 x), as
follows:
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First observe that if x < 0, then P(X 6 x) = 0; thus,

F
X

(x) = 0 for all x < 0.

Note that p(x) = 0 for 0 < x < 1; it then follows that

F
X

(x) = P(X 6 x) = P(X = 0) for 0 < x < 1.

On the other hand, P(X 6 1) = P(X = 0)+P(X = 1) = 1/8+3/8 = 1/2; thus,

F
X

(1) = 1/2.

Next, since p(x) = 0 for all 1 < x < 2, we also get that

F
X

(x) = 1/2 for 1 < x < 2.

Continuing in this fashion we obtain the following formula for F
X

:

F
X

(x) =



0 if x < 0,

1/8 if 0 6 x < 1,

1/2 if 1 6 x < 2,

7/8 if 2 6 x < 3,

1 if x > 3.

Figure 3.2.3 shows the graph of F
X

.
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Figure 3.2.3: Cumulative Distribution Function for X

Example 3.2.3 (Cumulative distribution for Xbar in Example 3.1.4) In
this example we use R to compute and plot the cumulative distribution function
for sample mean, Xbar, which we computed in Example 3.1.4.

We can modify the code for the pHat() function given in Appendix A.5
to define a function, DumDist(), that computes the cumulative distribution
function for Xbar. The code for this function is also given in Appendix A.5.

Assuming that we have a vector Xbar of sample means of all possible out-
comes of selecting 3 ages at random from the 10 of the hourly workers involved
in the second round of layoffs at Westvaco in 1991, we may compute F

X
(x) =

CumDist(Xbar,x), for any given value of x. For instance, we may compute
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CumDist(Xbar,33)= 0.025,

which is the probability that the mean age of three workers selected at random
out of the 10 is less than or equal to 33.

We can plot the cumulative distribution function of Xbar in R as follows:

• First, define a sequence of values of x from 25 to 65, which covers the
range of values of Xbar as seen in the histogram in Figure 3.1.2. Typing

x <- seq(25, 65, length = 1000)

will generate the sequence, which has 1000 terms, and store the values in
vector called x.

• The plot() function in R can then be obtain the graph of the cumulative
distribution function, F

X
of Xbar by typing

plot(x, CumDist(Xbar,x), type="p", pch=".")

The graph is shown in Figure 3.2.4
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Figure 3.2.4: Cumulative Distribution for X

The discontinuous nature of the graph of the cumulative distribution of Xbar is
an indication that Xbar is a discrete random variable.



26 CHAPTER 3. INTRODUCTION TO PROBABILITY

The importance of the cumulative distribution function, F
X

, of a random
variable X stems from the fact that, if F

X
(x) is known for all x ∈ R, then we

can compute the probability of the event (a < X 6 b) as follows

P(a < X 6 b) = F
X

(b)− F
X

(a).

For example,

CumDist(Xbar,35) - CumDist(Xbar,33)

yields 0, which shows that P(33 < X 6 35) = 0; this is another indication that
Xbar is a discrete random variable.

3.3 Statistical Independence

Example 3.3.1 Toss a fair coin twice in a row. The sample space for this
experiment is the set

{HH,HT,TH,TT}.

The fairness assumption leads to the equal likelihood probability model:

P(HH) = P(HT) = P(TH) = P(TT) =
1
4
.

Let A denote the event that head comes up in the first toss and B that of a
head coming up in the second toss. Then,

A = {HH,HT} and B = {HH,TH},

so that
P(A) =

1
2

and P(B) =
1
2
.

The event A and B is the event that a head will come up in both the first and
the second toss. We then have that

A and B = {HH}.

Consequently,

P(A and B) =
1
4
.

Observe that
P(A and B) = P(A) · P(B).

When this occurs, we say that events A and B are independent.

Definition 3.3.2 (Independent Events) Two events, A and B, are said to
be independent if

P(A and B) = P(A) · P(B).

In other words, the probability of the joint occurrence of the two events is the
product of their probabilities.
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Example 3.3.3 Given a deck of 20 cards, 12 of which are black and 8 are red,
consider the experiment of drawing two card at random and without replace-
ment. Let A denote the event that the first card is black and B the event that
the second card is also black. We show in this example that the A and B are
not independent.

First, observe that P(A) =
12
20

, or 60%. In the absence of information of

what actually occurred in the first draw, we should still get that P(B) = 60%.
On the other hand, we will see that

P(A and B) 6= P(A) · P(B).

To determine P(A and B) we need to compute the proportion of the total num-
ber of combinations of two black cards of the 20 which are black; that is,

P(A and B) =

(
12
2

)
(

20
2

) =
12 · 11
20 · 19

.

We then see that
P(A and B) 6= P(A) · P(B).

Note that what we do get is

P(A and B) = P(A) · 11
19

.

The fraction
11
19

is the probability that the second card we draw is black, if we
know that the first card drawn is black; for in that case there are 11 black cards
in the remaining 19. This is known as the conditional probability of B,
given A.

Definition 3.3.4 (Conditional Probability) Given two events A and B, with
P(A) > 0, the conditional probability of B given A, denoted by P(B | A), is
defined to be

P(B | A) =
P(A and B)

P(A)
.

In the previous example we have that the probability of a black card in the
second draw is black, given that the first draw yielded a black card, is

P(B | A) =

12
20
· 11
19

12
20

=
11
19

.

Observe that if A and B are independent, and P(A) > 0, then

P(B | A) =
P(A and B)

P(A)
=

P(A) · P(B)
P(A)

= P(B).
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Thus, information obtained from the occurrence of event A does not affect the
probability of B. This is another way to think about statistical independence.
For example, the fact that we know that we got a head in the first toss of a coin
should not affect the probability that the second toss will yield a head.

3.4 The Hypergeometric Distribution

In this section we compute the exact p–value associated with the the data for
randomized comparative experiment described in Activity #2 (Comparing two
Treatments).

Suppose a deck of 20 cards consists of 12 black cards and 8 red cards. Con-
sider the experiment of selecting 10 cards at random. Let X denote the number
of black cards in the random sample. Then, the p–value for the data in Activity
#2 is P (X > 7). In order to compute this probability, we need to determine
the probability distribution of the random variable X.

Example 3.4.1 In this example we show how to compute P(X = 8). We then
see how the calculation can be generalized to P(X = k), for k = 2, 3, . . . 10.

We consider all possible ways of choosing 10 cards out of the 20. The set of

all those possible combinations is the sample space. There are
(

20
10

)
elements

in the sample space, and they are all equally likely because of the random-
ization assumption in the experiment. In R, this number is computed to be
choose(20,10), or 184, 756. Out of all those combinations, we are interested in

the ones that consist of 8 black cards and 2 red ones. There are
(

12
8

)
ways of

choosing the black cards. For each one of these, there are
(

8
2

)
choices for the

red cards. We then get that there are
(

12
8

)
·
(

8
2

)
random samples of 8 black

cards and 2 red cards. Consequently,

P(X = 8) =

(
12
8

)
·
(

8
2

)
(

20
10

) ≈ 0.0750.

In general, we have that

P(X = k) =

(
12
k

)
·
(

8
10− k

)
(

20
10

) (3.8)

for k = 2, 3, . . . , 10 and zero otherwise. This probability distribution is known
as the hypergeometric distribution, which usually comes up when sampling
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without replacement. In R, the dhyper() can be used to compute the proba-
bilities in 3.8 as follows

dhyper(k,12,8,10).

In general, dhyper(k,b,r,n) gives the probability of seeing k black objects in
a random sample of size n, selected without replacement, from a collection of b
black objects and r red objects.

To compute the p–value associated with the data in Activity #2, we compute

p–value =
10∑

k=7

P (X = k).

This calculation can be performed in R as follows

pVal <- 0
for (k in 7:10) pVal <- pVal + dhyper(k,12,8,10)

This yields 0.3249583. So, the p–value is about 32.5%. In the class simulations
we estimated the p–value to be about 33%.

3.5 Expectation of a Random Variable

3.5.1 Activity #3: The Cereal Box Problem

Suppose that your favorite breakfast cereal now includes a prize in each box.
There are six possible prizes, and you really want to collect them all. However,
you would like to know how many boxes of cereal you will have to eat before
you collect all six prizes. Of course, the actual number is going to depend on
your luck that one time, but it would be nice to have some idea of how many
boxes you should expect to buy, on average.

In today’s activity, we will conduct experiments in class to simulate the
buying of cereal boxes. Your team will be provided with a die in order to run
the simulation. Do several runs, at least 10. We will then pool together the
results from each team in order to get a better estimate of the average number
of boxes that need to be bought in order to collect all six prizes.

Before you start, discuss in your groups how you are going to run the ex-
periment. Why does it make sense to use a die to run the simulation? What
assumption are you making about the probability of finding a certain prize in a
given cereal box? Are the assumptions you are making realistic?

Make a guess: how many boxes do you expect to buy before collecting all
six prizes?
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3.5.2 Definition of Expected Value

In the Cereal Box Problem activity, the random variable in question is the
number of cereal boxes that need to be purchased in order to collect all six
prizes. We are assuming here that all the prizes have been equally distributed;
that is, each prize is in one sixth of all the produced boxes. We also assume
that the placement of the prizes in each box is done at random. This justify the
use of a balanced six-sided die to do the simulations.

Let Y the number of times the die has to be rolled in order to obtain all six
numbers on the faces of the die. Then the values that Y can take are 6, 7, 8, . . .
We are not interested in the actually probability distribution for Y . What we
would like to know is the following: suppose we run the experiment many times,
as was done in class. Sometimes we find it takes 9 rolls to get all six numbers;
other times it might take 47; and so on. Suppose we keep track of the values
of Y for each trial, and that at the end of the trials we compute the average
of those values. What should we expect that average to be in the long run?
This is the idea behind the expected value of a random variable. We begin
by defining the expected value of a discrete random variable with finitely many
possible values.

Definition 3.5.1 (Expected Value) Let X be a discrete random variable
that can take on the values x1, x2, . . . , xN . Suppose we are given the proba-
bility distribution for X:

p
X

(xi) = P(X = xi) for each i = 1, 2, . . . , N.

The expected value of X, denoted by E(X), is defined to be

E(X) = x1pX
(x1) + x2pX

(x2) + · · ·+ xnp
X

(xN ),

or

E(X) =
N∑

k=1

xkp
X

(xk).

Thus, E(X) is the weighted average of all the possible values of X, where the
weights are given by the probabilities of the values.

Example 3.5.2 Let X denote the number of heads in three consecutive tosses
of a fair coin. We have seen that X is a random variable with probability
distribution

p
X

(k) =


1/8 if k = 0;
3/8 if k = 1;
3/8 if k = 2;
1/8 if k = 3.

and zero otherwise. We then have that

E(X) = 0p
X

(0) + 1p
X

(1) + 2p
X

(2) + 3p
X

(3) =
3
8

+ 2
3
8

+ 3
1
8

=
12
8

=
3
2
.
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Thus, on average, we expect to see 1.5 heads in three consecutive flips of a fair
coin.

Remark 3.5.3 If the random variable X is discrete, but takes on infinitely
many values x1, x2, x3, . . ., the expected value of X is given by the infinite sum

E(X) =
∞∑

k=1

xkp
X

(xk),

provided that the infinite sum yields a finite number.

3.5.3 The Law of Large Numbers

Here is an empirical interpretation of the expected value of a random variable
X. Recall that X is a numerical outcome of a random experiment. Suppose
that the experiment is repeated n times, and that each time we record the values
of X:

X1, X2, . . . , Xn.

We then compute the sample mean

Xn =
X1 + X2 + · · ·+ Xn

n
.

It is reasonable to assume that as n becomes larger and larger, the sample mean
should get closer and closer to the expected value of X. This is the content of
a mathematical theorem known as the Law of Large Numbers. This theorem is
also the mathematical justification of the frequency interpretation of probability
which we have been using in the simulations in this course. For example, flip a
fair coin (i.e., P(H) = 1/2) one hundred times. On average, we expect to see
50 heads. This is the reason why in the previous example in which the coin is
flipped 3 times we got an expected value of 3/2.

3.5.4 Expected Value for the Cereal Box Problem

Let Y the number of times a balanced die has to be rolled in order to obtain
all six numbers on the faces of the die. We can think of Y as simulating the
results of an experiment which consists of purchasing cereal boxes until we
collect all six prizes. We would like to estimate the expected value of Y . We
can use the Law of Large Numbers to get an estimate for E(Y ). The class
ran 140 simulations of the experiment and the outcomes of the experiments
were stored in a vector called Nboxes. These are contained in the MS Excel
file CerealBoxProblemAllClassSimulations.xls, which may be downloaded
from http://pages.pomona.edu/~ajr04747. The histogram in Figure 3.5.5
shows the frequency distribution of the values in the vecotr Nboxes. Observe
that the distribution of Nboxes is skewed to the right; that is, large values of Y
occur less frequently than those around the mean of the distribution, which is
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Figure 3.5.5: Cumulative Distribution for X

14.8. By the Law of Large Numbers, this serves as an estimate for the expected
value of Y . We will see shortly how to compute the actual value of E(Y ).

Let X1 denote the number of times it takes to roll any number. Once any
number has been rolled, we let X2 denote the number of rolls of the die that it
takes to come up with any number other than the one that has already come
up. Similarly, once two distinct numbers have been rolled, let X3 denote the
number of times it takes for a different number to come up. Continuing in this
fashion we see that

Y = X1 + X2 + X3 + X4 + X5 + X6,

so that

E(Y ) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6). (3.9)

It is clear that E(X1) = 1, since any number that comes up is fair game. To
compute the other expected values, we may proceed as follows: suppose we
want to compute E(X5), for instance. We have already rolled up four distinct
numbers, and so we need to come up up with 2 remaining ones. The probability
of rolling up any of the two numbers is

p =
2
6

=
1
3
.

We continue to roll the die until that event with probability p = 1/3 occurs.
How many tosses of the die would that take on average?
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More generally, suppose an experiment has two possible outcomes: one that
occurs with probability p, which we call a “success,” and and the other, which
we call a “failure” occurs with probability 1− p. We run the experiment many
times, assuming that the runs are independent, until a “success” is observed.
Let X denote the number of times it takes for the first “success” to occur. X
is then a random variable that can take on any of the values

1, 2, 3, . . .

We can use the independence assumption to compute the probability distribu-
tion for X. Starting with the event (X = 1), a success in the first trial, we see
that its probability is p, the probability of success. We then have that

p
X

(1) = p.

The event (X = 2), the first success occurs in the second trial, is the joint
occurrence of a failure in the first trial and a succuss in the second one. Since
the events are independent, we get that

p
X

(2) = (1− p)p.

Similarly, the event (X = 3) consists of 2 failures followed by 1 success, and
therefore

p
X

(3) = (1− p)2p.

We can then see that

p
X

(k) = (1− p)k−1p for k = 1, 2, 3, . . . .

This is an example of a discrete random variable which can take on infinitely
many values. Its distribution is called the geometric distribution with param-
eter p. The expected value of X is then

E(X) =
∞∑

k=1

(1− p)k−1p.

We may compute E(X) in a different and simpler way as follows: If a success
occurs in the first trial then only one trial is needed. This occurs with probability
p. On the other hand, if a failure occurs, we need to keep going. We then have
that

E(X) = p · 1 + (1− p) · (E(X) + 1).

The second term in the last equation simply states that if a failure occurs in the
first trial, then, on average, we need to roll E(X) more times to get a success.
Simplifying the previous algebraic expression for E(X) we get that

E(X) = p + (1− p)E(X) + 1− p,

from which we get that

E(X) = E(X)− pE(X) + 1.
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Thus,
pE(X) = 1,

and therefore
E(X) =

1
p
.

Hence, if the probability of a success is p, then, on average, we expect to see the
first success in 1/p trials. Thus, for example,

E(X5) =
1
1
3

= 3

Similarly,

E(X2) =
6
5
, E(X3) =

6
4
, E(X4) =

6
3
, and E(X6) = 6.

Substituting all these values into (3.9), we obtain that

E(Y ) = 1 +
6
5

+
3
2

+ 2 + 3 + 6 = 14.7,

which shows that our estimate of 14.8 is very close to the actual expected value.

3.6 Variance of a Random Variable

The expected value, E(X), of a random variable, X, gives an indication of where
the middle or center of its distribution. We now define a measure of the spread
of the distribution from its center.

Definition 3.6.1 (Variance of a Random Variable) Let X be a random
variable with expected value µ = E(X). The variance of X, denoted by
Var(X), is defined to be

Var(X) = E[(X − µ)2].

That is, Var(X) is the mean square deviation of values of X from E(X).
The positive square root of Var(X) is called the standard deviation of X

and is denoted by σ
X

.

We can compute the variance of X as follows:

Var(X) = E[X2 − 2µX + µ2]
= E(X2)− E(2µX) + E(µ2)
= E(X2)− 2µE(X) + µ2

= E(X2)− 2µ2 + µ2

= E(X2)− µ2.

Thus,
Var(X) = E(X2)− [E(X)]2.
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In the case in which X is discrete and takes on finitely many values, x1, x2, . . . , xN ,
we compute E(X2) as follows

E(X2) = x2
1pX

(x1) + x2
2pX

(x2) + · · ·+ x2
np

X
(xN );

that is, E(X2) is the weighted average of the squares of the values of X.

Example 3.6.2 Let X denote the number of heads in three consecutive tosses
of a fair coin. Then,

E(X) = 02p
X

(0) + 12p
X

(1) + 22p
X

(2) + 32p
X

(3) =
3
8

+ 4
3
8

+ 9
1
8

=
24
8

= 3.

We have seen that E(X) = 3/2. Thus,

Var(X) = E(X2)− [E(X)]2 = 3−
(

3
2

)2

=
3
4
.

The standard deviation of X then is

σ
X

=
√

3
2

.
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Chapter 4

Introduction to Estimation

Continuing with our study of statistical inference, we now turn to the problem of
estimating parameters from a given population based on information obtained
from a sample taken from that population. We begin with the example of
estimating the size of a population by means of capture–tag–recapture sampling.

4.1 Activity #4: Estimating the Number of Gold-
fish in a Lake

Introduction

A lake contains an unknown number of fish. In order to estimate the size of the
fish population in the lake, the capture–tag–recapture sampling method is
used. The nature of this sampling technique involves capturing a sample of size
M and tagging the fish. The sample is then released and the fish redistribute
themselves throughout the lake. A new sample of size n is then recaptured
and the number of tagged fish, t, is recorded. These numbers are then used to
estimate the population size.

Description

The goal of this activity is to come up with a good estimate for a population
size using the capture–tag–recapture sampling technique described above. We
will simulate this sampling method as follows. A bowl containing an unknown
number of goldfish crackers will be fish in the lake. We take out 100 (this will
be M) of the crackers and replace them with fish crackers of a different color
(for example, pretzel fish crackers). This simulates capturing and tagging the
fish. Each person/team will recapture a handful and record the sample size n
and the number of tagged fish t. Then record this data for each trial.

Discussion

• How would you use the numbers you collected to estimate the size of the
population?

37
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• What estimates do the class data yield?

• What assumptions are you making in the process of coming up with an
estimate of the fish population size?

• Can you come up with an interval estimate, as opposed to a point estimate,
for the population size?

• How confident are you on this interval estimate?

We denote the number of goldfish by N ; this is the population parameter
we would like to estimate. Assuming the the tagged fish distribute themselves
uniformly throughout the lake, then the proportion of tagged fish in the lake is

p =
M

N
.

We are also assuming that during the time of sampling no fish are going in or
out of the lake. Also, no fish are being born or dying.

The proportion of tagged fish in the sample,

p̂ =
t

n
,

serves as an estimate for the true proportion p. This is known as a point
estimate. We then have that

p̂ ≈ p,

or
t

n
≈ M

N
.

This yields the estimate

N ≈ Mn

t
for the size of the fish population. We then obtain the estimator

N̂ =
Mn

t

for the population size N .
In the class activity we collected samples of various size without replacement

and obtained the data shown in Table 4.1.
Notice that the class estimates range all the way from 820 to infinity. There

is a lot of variability in the estimates and we do not have an idea yet of the
likelihood that the true size of the population lies in that range; in other words,
what are the chances that the true population size lies below 820? A single
point estimate (in particular, any of the last two ones in the table) is not very
useful. We would like develop an estimate for the population size that also give
us a measure of the likelihood that the true population parameter lies in a given
range of estimates. This is known as a confidence interval estimate and we
will develop that concept in subsequent sections.
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n t N̂
41 5 820
27 3 900
63 6 1050
45 4 1125
59 5 1180
51 4 1275
53 4 1325
54 4 1350
183 13 1408
44 3 1467
45 3 1500
138 9 1533
63 4 1575
83 5 1660
50 3 1667
42 2 2100
65 3 2167
87 4 2175
46 2 2300
76 3 2533
50 1 5000
112 2 5600
118 2 5900
57 0 ∞
25 0 ∞

Table 4.1: Fish–in–the–Lake Activity Class Data
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4.2 An interval estimate for the proportion of
tagged fish

In this section we develop a confidence interval for the true proportion p of
tagged fish in the lake. This will lead to a confidence interval for the population
size N .

In order to develop a confidence interval for the proportion, p, of tagged fish
in Activity #4, we need to look more carefully into the nature of the sampling
that we performed. In the class activity we collected handfuls of fish without
replacement. If a sample is of size n, then the probability that the first fish
we pick is tagged is p. However, the probability that the second fish we pick is
tagged is not going to be p. On the other hand, if we had been sampling with
replacement (that is, we pick the fish, note whether it is tagged or not, and put it
back in the lake), the probability that a given fish is tagged is p. The distribution
of the number of tagged fish in the sample of tagged fish in a sample of size n
will then be easier to analyze. We will do this analysis of the sampling with
replacement first; this will lead to the study of the binomial distribution.
Later in this section, we will go back to the sampling without replacement
situation which is best treated with the hypergeometric distribution.

4.2.1 The Binomial Distribution

Suppose that we collect a sample of size n of fish from the lake with replacement.
Each time we collect a fish, we note whether the fish is tagged or not and we
then put the fish back. We define the random variables

X1, X2, X3, . . . , Xn

as follows: for each i = 1, 2, . . . , n, Xi = 1 if the fish is tagged and Xi = 0 if it
is not. Then, each Xi is a random variable with distribution

p
Xi

(x) =

{
1− p if x = 0;
p if x = 1.

for i = 1, 2, . . . , n. Furthermore, the random variables X1, X2, . . . , Xn are inde-
pendent from one another; in other words, the joint probabilities

P (Xj1 = xj1 , Xj2 = xj2 , . . . , Xjk
= xjk

),

for any subset {j1, j2, . . . , jk} of {1, 2, 3, . . . n}, are computed by

p
Xj1

(xj1) · pXj2
(xj2) · · · pXjk

(xjk
).

Each random variable Xi is called a Bernoulli Trial with parameter p. We
then have n independent Bernoulli trials.

Then random variable

Yn = X1 + X2 + · · ·+ Xn
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then counts the number of tagged fish in a sample of size n. We would like to
determine the probability distribution of Yn. Before do so, we can compute the
expected value of Yn as follows

E(Yn) = E(X1) + E(X2) + · · ·+ E(Xn)

where
E(Xi) = 0 · (1− p) + 1 · p = p,

for each i = 1, 2, . . . , n, so that

E(Yn) = np.

Since the Xi’s are independent, it is possible to show that

Var(Yn) = Var(X1) + Var(X2) + · · ·+ Var(Xn),

where, for each i,
Var(Xi) = E(X2

i )− [E(Xi)]2,

with
E(X2

i ) = 02 · (1− p) + 12 · p = p,

so that
Var(Xi) = p− p2,

or
Var(Xi) = p(1− p).

We then have that
Var(Yn) = np(1− p).

We now compute the probability distribution for Yn. We begin with

Y2 = X1 + X2.

In this case, observe that Y2 takes on the values 0, 1 and 2. We then compute

P(Y2 = 0) = P(X1 = 0, X2 = 0)
= P(X1 = 0) · P(X2 = 0), by independence,
= (1− p) · (1− p)
= (1− p)2.

Next, since the event (Y2 = 1) consists of the mutually exclusive events

(X1 = 1, X2 = 0) and (X1 = 0, X2 = 1),

P(Y2 = 1) = P(X1 = 1, X2 = 0) + P(X1 = 0, X2 = 1)
= P(X1 = 1) · P(X2 = 0) + P(X1 = 0) · P(X2 = 1)
= p(1− p) + (1− p)p
= 2p(1− p).
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Finally,
P(Y2 = 2) = P(X1 = 1, X2 = 1)

= P(X1 = 1) · P(X2 = 1)
= p · p
= p2.

We then have that the probability distribution of Y2 is given by

p
Y2

(y) =


(1− p)2 if y = 0,
2p(1− p) if y = 1,
p2 if y = 2.

(4.1)

We shall next consider the case in which we add three mutually independent
Bernoulli trials X1, X2 and X3. In this case we write

Y3 = X1 + X2 + X3 = Y2 + X3.

Then, Y2 and X3 are independent. To see why this is so, compute

P(Y2 = y, X3 = z) = P(X1 + X2 = y, X3 = z)
= P(X1 = x, X2 = y − x, X3 = z)
= P(X1 = x) · P(X2 = w − x) · P(X3 = z),

since the random variables are independent. Consequently, by independence
again,

P(Y2 = y, X3 = z) = P(X1 = x,X2 = y − x) · P(X3 = z)
= P(X1 + X2 = y) · P(X3 = z)
= P(Y2 = y) · P(X3 = z),

which shows the independence of Y2 and X3.
To compute the probability distribution of Y3, first observe that Y3 takes on

the values 0, 1, 2 and 3, and that

Y3 = Y2 + X3,

where the probability distribution function of Y2 is given in equation (4.1).
We compute

P(Y3 = 0) = P(Y2 = 0, X3 = 0)
= P(Y2 = 0) · P(X3 = 0),
= (1− p)2 · (1− p)
= (1− p)3.

Next, since the event (Y3 = 1) consists of mutually exclusive events

(Y2 = 1, X3 = 0) and (Y2 = 0, X3 = 1),
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P(Y3 = 1) = P(Y2 = 1, X3 = 0) + P(Y2 = 0, X3 = 1)
= P(Y2 = 1) · P(X3 = 0) + P(Y2 = 0) · P(X3 = 1)
= 2p(1− p)(1− p) + (1− p)2p
= 3p(1− p)2.

Similarly,

P(Y3 = 2) = P(Y2 = 2, X3 = 0) + P(Y2 = 1, X3 = 1)
= P(Y2 = 2) · P(X3 = 0) + P(Y2 = 1) · P(X3 = 1)
= p2(1− p) + 2p(1− p)p
= 3p2(1− p).

Finally,
P(Y3 = 3) = P(Y2 = 2, X3 = 1)

= P(Y2 = 0) · P(X3 = 0)
= p2 · p
= p3.

We then have that the probability distribution function of Y3 is

p
Y3

(y) =


(1− p)3 if y = 0,

3p(1− p)2 if y = 1,

3p2(1− p) if y = 2
p3 if y = 3.

If we go through similar calculations for the case of four mutually indepen-
dent Bernoulli trials with parameter p, we obtain that for

Y4 = X1 + X2 + X3 + X4,

p
Y4

(y) =



(1− p)4 if y = 0,

4p(1− p)3 if y = 1,

6p2(1− p)2 if y = 2
4p3(1− p) if y = 3
p4 if y = 4.

Observe that the terms in the expression for p
Y4

(y) are the terms in the expan-

sion of [(1−p)+p]4. In general, the expansion of the nth power of the binomial
a + b is given by

(a + b)n =
(

n

0

)
bn +

(
n

1

)
abn−1 + · · ·

(
n

k

)
akbn−k + · · ·

(
n

n

)
an,

where (
n

k

)
=

n!
k!(n− k)!

, k = 0, 1, 2 . . . , n,
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are called the binomial coefficients. Written in a more compact form,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

Thus, the expansion for [(1− p) + p]n is

[(1− p) + p]n =
n∑

k=0

(
n

k

)
pk(1− p)n−k.

Observe that [(1− p) + p]n is also equal to 1. We then have that

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1,

which shows that the terms
(

n

k

)
pk(1− p)n−k do indeed define the probability

distribution of a random variable. This is precisely the distribution for

Yn = X1 + X2 + · · ·+ Xn,

where X1, X2, . . . , Xn are n mutually independent Bernoulli trials with param-
eter p, for 0 < p < 1. We therefore have that

p
Yn

(k) =
(

n

k

)
pk(1− p)n−k for k = 0, 1, 2, . . . , n,

and Yn is said to have a binomial distribution with parameters n and p. We
write Yn ∼ B(n, p). As we have seen earlier, the expected value and variance of
Yn are

E(Yn) = np and Var(Yn) = np(1− p).

Example 4.2.1 Suppose that the true proportion of tagged fish in the lake is
p = 0.06. If we collect 100 fish with replacement and note the number of fish out
of the one hundred that are tagged in a random variable Y , then its distribution
is given by

p
Y
(k) =

(
100
k

)
(0.06)k(0.94)100−k for k = 0, 1, 2, . . . , 100.

In R, these probabilities can be computed using the function dbinom(). For
example, the probability that we will see 5 tagged fish in a sample of size 100 is

dbinom(5,100,0.06)

or about 16.4%. In general, dbinom(x,n,p) gives the probability of x successes
in n independent Bernoulli trials with probability of a success p.

A plot of the distribution of Yn for x between 0 and 20 is shown in Figure
4.2.1. The plot was obtained in R by typing
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Plot of Distribution for dbinom(x,100,0.06)

Figure 4.2.1: Probability Distribution of Yn, for p = 0.06 and n = 100

x <- 0:20
plot(x,dbinom(x,100,0.06),type="p", pch="*")

Another way to plot this distribution function makes use of the barplot()
function in R. Type the R commands

x <- 0:20
barplot(dbinom(x,100,0.06), space = c(0,0),names.arg=x,

ylab="Probability", xlab="x")

to obtain the plot shown in Figure 4.2.2. In the figure, the probability of a
given value, x, is to be understood as the area the bar above it. It is therefore
assumed that each bar has width 1.

Notice that in both plots in Figures 4.2.1 and 4.2.2 the distribution is cen-
tered around the value 6, which is the expected value of Yn for n = 100 and
p = 0.06. Corresponding plots for Yn, for n = 1000, are shown in Figures 4.2.3
and 4.2.4.

Thus, for a larger value of n we see a very symmetric distribution for Yn

around its expected value of 60. The graphs also reveal an interesting feature
of the binomial distribution for large values of n. The distribution function for
Yn “smooths out;” that is, the graphs can be approximated by a smooth curve.
This is illustrated in Figure 4.2.5. The points in the graph of p

Yn
are indicated

by a + sign. The smooth curve in the Figure 4.2.5 is very close to the graph
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Figure 4.2.2: Probability Distribution of Yn, for p = 0.06 and n = 100
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Figure 4.2.3: Probability Distribution of Yn, for p = 0.06 and n = 1000
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Figure 4.2.4: Probability Distribution of Yn, for p = 0.06 and n = 1000
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of a continuous distribution known as the normal distribution with expected
value np and variance np(1 − p) with p = 0.06 and n = 1000. This illustrates
a very important and surprising theorem in Probability and Statistics: The
Central Limit Theorem.

4.2.2 The Central Limit Theorem

The smooth curve in Figure 4.2.5 is very close to the graph of the function

f(x) =
1√

2π σ
e−(x−µ)2/2σ2

for x ∈ R,

where µ = 60 and σ2 = 56.4. This function is called the density function for
a normally distributed random variable, X, with parameters µ and σ2. We
write

X ∼ N(µ, σ2).

It can be shown that ∫ ∞

−∞
f(x) dx = 1.

The density function can be used to compute probabilities of events (a < X 6 b)
for real numbers a and b, with a < b as follows

P (a < X 6 b) =
∫ b

a

f(x) dx.

We then get that the cumulative distribution function of X is given by

F
X

(x) = P (X 6 x) =
∫ x

−∞
f(t) dt for all x ∈ R.

In R, the cumulative distribution function for a N(µ, σ2) random variable may
be estimated by the pnorm() function as follows

F
X

(x) = pnorm(x, µ, σ).

Note that we input the standard deviation, σ, and not variance, σ2. A graph of
F

X
may be obtained in R by typing

curve(pnorm(x,60,7.51),0,120)

The graph of F
X

for µ = 60 and σ2 = 56.4 is shown in Figure 4.2.6.
Recall that once we know the cumulative distribution function, we can com-

pute the probability of events (a < X 6 b) by

P (a < X 6 b) = F
X

(b)− F
X

(a).

For example,

P (60 < X 6 67.51) ≈ pnorm(67.51, 60, 7.51)− pnorm(60, 60, 7.51) ≈ 0.3413
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Figure 4.2.6: Cumulative Distribution for X ∼ N(60, 56.4)

Let
X1, X2, X3, . . . , Xn, . . .

denote a sequence of independent random variables all having the same distri-
bution with expected value µ and variance σ2; that is,

E(Xi) = µ, and Var(Xi) = σ2 for all i = 1, 2, 3, . . . .

The random variable
Xn =

X1 + Xn + · · ·+ Xn

n

is called the sample mean of the random sample

X1, X2, . . . , Xn.

Note that
E(Xn) = µ,

since all the Xi’s have expected value µ. It is also possible to show, by the
independence of the random variables, that

Var(Xn) =
σ2

n
.

The Central Limit Theorem states that, for all real numbers a and b with
a < b,

lim
n→∞

P

(
a <

Xn − µ

σ/
√

n
6 b

)
=
∫ b

a

f
Z
(z) dz, (4.2)

where f
Z

is the density function for a normal random variable with expected
value 0 and variance 1; that is, Z is a random variable with a probability density
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function
f

Z
(z) =

1√
2π

e−z2/2 for z ∈ R.

Observe that Equation (4.2) can be written us

lim
n→∞

P

(
a <

Xn − µ

σ/
√

n
6 b

)
= P (a < Z 6 b),

which in turn yields the approximation

P

(
a <

Xn − µ

σ/
√

n
6 b

)
≈ P (a < Z 6 b) for large n. (4.3)

The probability on the right–hand side of (4.3) is independent of the parameters
µ and σ2 and can be estimated in R using

P (a < Z 6 b) ≈ pnorm(b, 0, 1)− pnorm(a, 0, 1).

For example

P (−1.96 < Z 6 1.99) ≈ pnorm(1.96, 0, 1)− pnorm(−1.99, 0, 1) ≈ 0.9500,

or about 95%.

Example 4.2.2 (Normal Approximation to the Binomial Distribution)
Let X1, Xn, . . . , X, . . . be a sequence of independent Bernoulli trials with param-
eter p, for 0 < p < 1. Then,

E(Xi) = p, and Var(Xi) = p(1− p) for all i = 1, 2, 3, . . .

According to the Central Limit Theorem (see Equation (4.3)), for large values
of n,

P

(
a <

Xn − p√
p(1− p)/

√
n

6 b

)
≈ P (a < Z 6 b). (4.4)

Observe that
Xn − p√

p(1− p)/
√

n
=

nXn − np√
np(1− p)

,

where nXn = Yn ∼ B(n, p). It then follows from (4.4) that

P

(
a <

Yn − np√
np(1− p)

6 b

)
≈ P (a < Z 6 b) for large values of n, (4.5)

where Yn ∼ B(n, p). In other words, if we look at the distribution of the
values of deviations of the values of Yn ∼ B(n, p) from the mean or center of the
distribution, µ, scaled by the standard deviation,

√
np(1− p), for large values of
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n, then distribution is very closed to that of a N(0, 1) random variable. Loosely
speaking, the distribution of the random variables

Yn − np√
np(1− p)

for large values of n is close to the distribution of Z ∼ N(0, 1). Thus, the
distribution of Yn for large values of n is close to the distribution of

np +
√

np(1− p)Z

which has a normal distribution with mean np and variance np(1− p). This is
illustrated in Figure 4.2.7.
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Figure 4.2.7: Probability Distribution of Yn ∼ B(1000, 0.06) and Normal Ap-
proximation

4.2.3 Confidence Interval for Proportions

Consider the problem of estimating the number of fish in a fish population of
size N by the capture–tag–recapture sampling method. Suppose that we have
captured and tagged M fish and return them to the lake. Then, the proportion
of tagged fish in the lake is

p =
M

N
.

Suppose that we collect a sample of size n of fish from the lake with replacement.
Each time we collect a fish, we note whether the fish is tagged or not and we
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then put the fish back. We define the random variables

X1, X2, X3, . . . , Xn, . . .

as follows: for each i = 1, 2, 3 . . ., Xi = 1 if the fish is tagged and Xi = 0 if it is
not. Then, the sample proportion

p̂n =
X1 + X2 + · · ·+ Xn

n

is a point estimate for p. We would like to obtain an interval estimate for p of
the form

(p̂n − δ, p̂n + δ)

where δ is a positive number which is chosen so that

P (p̂n − δ < p < p̂n + δ) ≈ 0.95,

for instance, or any other pre–assigned large probability.
By the Central Limit Theorem (see Equation (4.4)), for large samples of size

n,

P

(
a <

p̂n − p√
p(1− p)/

√
n

6 b

)
≈ P (a < Z 6 b). (4.6)

for any real numbers a and b with a < b.
Observe that if

p̂n − δ < p < p̂n + δ,

then
−δ < p− p̂n < δ,

or
−δ < p̂n − p < δ.

Dividing the last inequality by
√

p(1− p)/
√

n yields

− δ√
p(1− p)/

√
n

<
p̂n − p√

p(1− p)/
√

n
<

δ√
p(1− p)/

√
n

.

We then have by (4.6) that, for large values of n,

P (p̂n − δ < p < p̂n + δ) = P

(
− δ√

p(1− p)/
√

n
<

p̂n − p√
p(1− p)/

√
n

<
δ√

p(1− p)/
√

n

)

≈ P

(
− δ√

p(1− p)/
√

n
< Z <

δ√
p(1− p)/

√
n

)
,

where Z ∼ N(0, 1). We now use the Law of Large Numbers to get a further
approximation

P (p̂n − δ < p < p̂n + δ) ≈ P

(
− δ√

p̂n(1− p̂n)/
√

n
< Z <

δ√
p̂n(1− p̂n)/

√
n

)
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Thus, to get
P (p̂n − δ < p < p̂n + δ) ≈ 0.95,

we may choose δ so that

δ√
p̂n(1− p̂n)/

√
n

= 1.96.

We then get that

δ = 1.96

√
p̂n(1− p̂n)√

n
.

This yields an approximate 95% confidence interval for p:(
p̂n − 1.96

√
p̂n(1− p̂n)√

n
, p̂n + 1.96

√
p̂n(1− p̂n)√

n

)
.

Example 4.2.3 In the fish–in–the–lake activity in class, we collected a sample
of size n = 100 with replacement and counted t = 5 tagged fish. We then have
that

p̂n =
5

100
= 0.05

is a point estimate for the true, unknown, proportion p of tagged fish in the
lake. A 95% confidence interval for the true proportion p is then(

p̂n − 1.96

√
p̂n(1− p̂n)√

n
, p̂n + 1.96

√
p̂n(1− p̂n)√

n

)
,

where

1.96

√
p̂n(1− p̂n)√

n
≈ 0.043.

Thus, the 95% confidence interval for p is (0.05−0.043, 0.05+0.043) or (0.007, 0.093).

Definition 4.2.4 (Confidence Interval1) A level C confidence interval for a
parameter is an interval computed from sample data by a method that has a
probability C of producing an interval containing the true value of the popula-
tion parameter.

In the previous example we produced the interval estimate (0.007, 0.093)
for the proportion of tagged fish in the fish–in–the–lake activity based on a
sample size 100 in which there were 5 tagged fish. The interval was obtained by
a procedure with an approximate probability of 95% of producing an interval
that contains the true population proportion. In other words, on average, 95%
of the intervals computed by the procedure will contain the true population
proportion.

1This definition was taken from page 359 in Moore, McCabe abd Graig, Introduction to
the Practice of Statistics, Sixth Edition.
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The 95% confidence interval for the proportion of tagged fish in the lake
produced in the previous example allows us to obtain a corresponding 95%
confidence interval for the population size N . We do this by using the relation

N =
M

p
,

where M = 100 in our case.
From the inequality

0.007 < p < 0.093,

we obtain
1

0.007
>

1
p

>
1

0.093
or

1
0.093

<
1
p

>
1

0.007
.

Multiplying by M = 100 we then obtain that

1075 < N < 14, 286.

Thus, a 95% confidence interval for the number of fish in the lake is (1075, 14286).
To obtain a 90% confidence interval for the proportion of tagged fish in the

lake, we use (
p̂n − z∗

√
p̂n(1− p̂n)√

n
, p̂n + z∗

√
p̂n(1− p̂n)√

n

)
,

where z∗ is a positive number with the property that

P(−z∗ < Z 6 z∗) ≈ 0.9,

where Z ∼ N(0, 1). Using R we find

P (−1.6449 < Z 6 1.6449) ≈ pnorm(1.6449, 0, 1)−pnorm(−1.6449, 0, 1) ≈ 0.9000.

Thus, we can take z∗ to be about 1.6449 or 1.645. We then obtain that the 90%
confidence interval for the true proportion of tagged fish in the lake is(

p̂n − 1.645

√
p̂n(1− p̂n)√

n
, p̂n + 1.645

√
p̂n(1− p̂n)√

n

)
,

where p̂n = 0.05 and n = 100, which yields

(0.05− 0.036, 0.05 + 0.036) or (0.014, 0.086).

This yields the following 90% confidence interval for the true population size in
the fish–in–the–lake activity:

1163 < N < 7143.

Thus, the length of the interval decreases as the confidence level decreases.
Another way to decrease the length of the interval is to increase the sample
size.
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4.3 Sampling from a uniform distribution

The Central Limit Theorem states that if

X1, X2, . . . , Xn, . . .

are independent observations from distribution with mean µ and variance σ2,
then, for large values of n, the sample mean

Xn =
X1 + Xn + · · ·+ Xn

n

has a distribution which is approximately normal with mean µ and variance
σ2

n
; that is, approximately,

Xn ∼ N(µ, σ2/n) for large values of n.

As another illustration of the Central Limit Theorem, we present here an
example in which we sample from a continuous distribution whose probability
density function is

f(x) =

{
1 if 0 < x < 1;
0 otherwise.

x

f
X

1

1

Figure 4.3.8: Probability Density Function for X ∼ U(0, 1)

Note that ∫ ∞

−∞
f(x) dx =

∫ 1

0

1 dx = 1;

so that f is indeed the density function of a continuous random variable, X.
Thus, to compute the probability of the event a < X 6 b we evaluate∫ b

a

f(x) dx.

For example, to determine the probability that X lies between 0.1 and 0.47, we
compute

P (0.1 < X 6 0.47) =
∫ 0.47

0.1

f(x) dx = 0.37,
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or 37%.
If X is a random variable having the probability density f , we say that X

has a uniform distribution over the interval (0, 1). We write X ∼ U(0, 1) and
denote the density function of X by f

X
(see Figure 4.3.8). The expected value

of X is computed as follows

E(X) =
∫ ∞

−∞
xf

X
(x) dx =

∫ 1

0

x dx =
1
2
.

Similarly,

E(X2) =
∫ ∞

−∞
x2f

X
(x) dx =

∫ 1

0

x2 dx =
1
3
.

It then follows that the variance of X is given by

Var(X) = E(X2)− [E(X)]2 =
1
3
− 1

4
=

1
12

.

We then have that the mean of X is µ = 1/2 and its variance is σ2 = 1/12.
Let

X1, X2, . . . , Xn, . . .

be independent random variables all having a U(0, 1) distribution. These cor-
responds to selecting numbers from the interval (0, 1) at random. In R this can
be done using the runif() function. Typing

runif(n,0,1)

yields a sample of n random numbers between 0 and 1. We can simulate collect-
ing many random samples of size n and computing the mean of each sample.
A histogram of the samples will then give us an idea of what the sampling
distribution for the sample mean,

Xn =
X1 + Xn + · · ·+ Xn

n
,

looks like. The following R code generates 10000 of those samples of size n =
100, computes their means and stores them in a vector called Xbar.

n <- 100
Nrep <- 10000 # number of repetitions
Xbar <- mean(runif(n,0,1))

# sets initial value of Xbar
L <- Nrep -1 # we need Nrep - 1 more repetitions
for (i in 1:L) # Sets up a loop from 1 to L
{
Xbar <- c(Xbar, mean(runif(n,0,1)))
}
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Figure 4.3.9: Histogram of Xbar
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Figure 4.3.10: Density histogram of Xbar
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The histogram of Xbar is shown in Figure 4.3.9. Typing hist(Xbar,freq=FALSE)
in R yields the “density” histogram for Xbar shown in Figure 4.3.10.

The density histogram in Figure 4.3.10 has the property that the area of the
bars correspond to the probability that Xbar takes on values lying at the base
of the bar. In this sense (i.e., in the sense of areas of the bars in the histogram),
the picture in Figure 4.3.10 gives the probability distribution of Xbar.

To plot the normal approximation density given by the Central Limit The-
orem, we need to plot the density function

f(x) =
1√

2π σ
e−(x−µ)2/2σ2

for x ∈ R,

where µ = 0.5 and σ2 =
1

1200
. To superimpose the graph of f on the density

plot in Figure 4.3.10, type the following commands in R:

x <- seq( 0.38, 0.62, length = 1000)
lines(x,dnorm(x,0.5,0.0288675))

where 0.0288675 is (approximately) the standard deviation of Xn, for n = 100.
The graph is shown in Figure 4.3.11.

Density plot of Xbar and Normal Approximation
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Figure 4.3.11: Density histogram of Xbar and Approximating Normal Density



Chapter 5

Goodness of Fit

When estimating parameters for a population based on sample data, we usually
make assumptions as to what the distribution of a certain random variable is.
For example, in the fish–in–the–lake activity, we assumed that the distribution
of the number of tagged fish in a sample of size n followed a binomial distribution
with parameters n and p, where p is the population parameter we are trying
to estimate (i.e., the true proportion of tagged fish in the lake). Based on
that assumption and using the Law of Large Numbers and the Central Limit
Theorem, we were able to obtain a confidence interval estimate for p.

Sometimes, we are interested in knowing to what degree the distribution of
a random variable follows a some theoretical distribution. For example, is the
distribution of tagged fish in a sample truly binomial? Or, going further into
the sampling procedure, is it true that the distribution of the outcomes of a
single draw of a fish is truly a Bernoulli trial with parameter p?

There is a procedure known as a goodness of fit test that allows us to
determine how close (or how far) a given distribution is from a hypothetical
one based on information contained in a sample. We illustrate the use of this
procedure in the following class activity.

5.1 Activity #5: How Typical are our House-
holds’ Ages?

Introduction1

Consider a sample made up of the people in the households of each pearson in
our class. Would their ages be representative of the ages of all households in
the United States? Probably not. After all, it would not be a random sample.
But how unrepresentative would the sample be with regard to ages of people in
the United States?

1Adapted from Activity–Based Statistics, Second Edition, by Scheaffer, Watkins, Witmer
and Gnanadesikan. Key College Publishing, 2004

59
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Question

The latest census in the United States yielded the following age distribution2:

Age Range Proportion in US
Population

0–18 0.26
18–64 0.62
64+ 0.12

Table 5.1: US 2000 Census: Household Age Distribution

Is the age distribution of the people from the households in the class typical of
that of all residents in the United States?

Discussion

1. Would you expect the age distribution from the households in your class
to be typical of the age distribution of all US residents? Why or why not?

2. If there is any discrepancy between the two distributions, how would you
measure that discrepancy?

Data Collection

In the following table record the number of people in households from this class
for each age range. In the last column, assuming that the class distribution will
follow the national distribution, record the number of people you would expect
to see in each age range.

Age Range Number Observed in Expected Number
Households from this in the Class

Class
0–18
18–64
64+
Total

Table 5.2: Class Household Age Data

Analysis
2Source: http://www.census.gov/prod/2001pubs/c2kbr01-12.pdf
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If we call the observed numbers in the second column O1 , O2 and O3 , for each
age range respectively, and E1 , E2 and E3 the corresponding expected values,
then one way to measure the discrepancy between the two distributions is by
computing the statistic

(O1 − E1)
2

E1

+
(O2 − E2)

2

E2

+
(O3 − E3)

2

E3

.

This is usually denoted by χ2 and is known as the Chi–squared statistic.

Is the χ2 statistic you computed large enough to convince you that the ages
of the households from this class are not similar to those of a typical random
sample of US residents?

Simulations

Simulate drawing random samples of the ages from the population of US resi-
dents to see how often we get a value of the χ2 statistic that is as large or larger
than the one from the class.

Discuss how you would use R to run this simulation.

Conclusion

Based on your simulations, estimate the probability that a random sample of US
residents (of the same size as the sample in the class) would have a χ2 statistic
as large or larger than the one obtained in class.

Is the distribution of ages of the households from the class similar to those of a
typical random sample of US residents? What do you conclude?

5.2 The Chi–Squared Distance

The class data, as well as the expected values based on the USA age distribution
shown in Table 5.1 and the sample size, are shown in Table 5.3.

Age Range Number Observed in Expected Number
Households from this in the Class

Class
0–18 24 36
18–64 110 87
64+ 6 17
Total 140 140

Table 5.3: Class Household Age Data

The entries in the second column were obtained by multiplying the propor-
tions in the USA Census data distribution by the sample size, which is 140. For
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instance, the first entry in the second column is (0.26) · (140) = 36.4, which we
rounded to 36. In R, these calculations can be performed as follows:

First, define a vector of postulated proportions based on the USA 2000
Census distribution

Prop <- c(0.26,0.62,0.12)

Then, the expected values are obtained by typing

Exp <- round(140*Prop)

Typing Exp in R then yields

[1] 36 87 17

which are the first three entries in the third column in Table 5.3.

The Chi-Squared statistic

X2 =
(O1 − E1)

2

E1

+
(O2 − E2)

2

E2

+
(O3 − E3)

2

E3

,

gives a measure of how far the observed counts in each category are from the
expected values predicted by the assumption that the class sample is represen-
tative of the USA population with regards to age distribution. This assumption
constitutes our null hypothesis or null model; that is, the household members of
the people in this class is a random sample from a populations having a distri-
bution for categories Cat1, Cat2 and Cat3 given by the proportions p1, p2 and
p3:

Ho : p1 = 0.26, p2 = 0.62, p3 = 0.12.

In R, the Chi–Squared statistic may be computed as follows:
First, define a vector of observed values

Obs <- c(24,110,6)

Then,

ChiSqr <- sum((Obs-Exp)^2/Exp)

This yields a value of about 17.20. What are the chances that, if we sample
repeatedly from the USA population, each time collecting 140 ages and com-
puting the Chi–Squared statistic, we would obtain a value of 17.20 or higher?
The answer to this question is the p–value for the test. We will first estimate
the p–value by simulating the sampling procedure many times and computing
the proportion of times that the Chi–Squared statistic is 17.2 or higher.

To perform the simulation, we will use the runif() function in R to gen-
erate samples of size n = 140 of values between 0 and 1; typing sample <-
runif(n,0,1), where n = 140, will generate a vector sample1 of 140 values
between 0 and 1. We will then count how many of the values in sample1 are
between 0 and p1 = 0.26 and put the result into a category which we will call
SimObs1. This will simulate the number of people in the sample with ages
between 0 and 18. The following code in R will do this for us:
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n <- 140
Prop <- c(0.26,0.62,0.12)

sample <- runif(n,0,1)

SimObs1 <- 0 # Sets up counter
for (i in 1:n) # Sets up loop
{

SimObs1 <- SimObs1 + (sample[i]>=0 & sample[i]<=Prop[1])
# adds 1 to counter1 if 0<= value <= Prop[1]

}

For the particular random sample that we obtained, this code yields a count of
34.

We can do something similar for the category of ages between 18 and 64.
This time we use the code

SimObs2 <- 0 # Sets up counter
for (i in 1:n) # Sets up loop
{

SimObs2 <- SimObs2 + (sample[i]> Prop[1] & sample[i]<=Prop[1]+Prop[2])
# adds 1 to counter1 if p1<= value <= p1+p2

}

where we have used the values of n, Prop and sample defined previously.
This yields a count of 89. We don’t need to perform the simulation for the

third category since we know that it will be n − 34 − 89 or 17. We therefore
obtain the simulated result shown in Table 5.4. The corresponding Chi–Squared

Age Range Simulated Expected
value Value

0–18 34 36
18–64 89 87
64+ 17 17
Total 140 140

Table 5.4: Age distribution for one simulated sample

statistic may be obtained by typing:

SimObs <- c(34,89,17)
ChiSqr1 <- sum((SimObs-Exp)^2/Exp)

which yields a Chi–Squared value of about 0.16. We see the value is much lower
than the observed one. If we repeat the simulated sampling procedure many
times, we can get an estimate of the probability that the Chi–Squared statistic
is as high or higher than the observed value of 17.2.
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We can automate the sampling procedure in R by generating many sam-
ples, computing the Chi–squared statistic for each sample and storing them in
a vector, which we shall also call ChiSqr. The distribution of this vector will
approximate the distribution of the Chi–Squared statistic under the assump-
tion that the samples are randomly selected from the US population. A code
performing this simulation is given in the Appendix A.4.

A histogram of ChiSqr is shown in Figure 5.2.1.
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Figure 5.2.1: Histogram of ChiSqr

In order to estimate the p–value for the test of hypothesis that the age
distribution in our class follows the distribution of the entire US population, we
may use the pHat() function that we have defined previously in the course. We
obtain

p–value ≈ pHat(ChiSqr,17.2) ≈ 0.001

or 0.1%. Thus, it is highly unlikely that the age distribution of our class sample
is truly a random sample of the entire US population.

5.3 The Chi–Squared Distribution

Figure 5.3.2 shows that density distribution of the ChiSqr vector that resulted
from a simulation like the one described in the previous section. Typing the
commands

x <- seq(0,25,length =1000)
lines(x,dchisq(x, 2),col="blue")

superposes a density curve on the plot in 5.3.2. The output is shown in Figure
5.3.3. The curve in Figure 5.3.3 is the graph of the function given by
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Density Histogram of ChiSqr
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Figure 5.3.2: Density Histogram of ChiSqr

Histogram of ChiSqr and Approximating Density
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Figure 5.3.3: χ2
2 Density Curve
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f(x) =


1
2
e−x/2 if x > 0;

0 otherwise.

This is the probability density function for what is known as a Chi–Squared
random variable, X, with 2 degrees of freedom; we write X ∼ χ2

2. In R, the
density function f is given, approximately, by

dchisq(x,2) for all x.

Figure 5.3.3 illustrates the fact that, for large sample sizes, the density of χ2
2

distribution approximates the distribution of the vector ChiSqr obtained in the
simulations of the age distribution activity.

In a goodness of fit test, the degrees of freedoms parameter has to do with
the number of categories that we are trying to fit in a model. If k denotes the
number of categories, them the number of degrees of freedom is k−1. Thus, for
a goodness of fit test with k categories, for large sample sizes, the distribution
of ChiSqr is approximated by a χ2

k−1 distribution. Figures 5.3.4 and 5.3.5 we
plot the density function for χ2

1 and χ2
2 random variables, respectively. The
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Figure 5.3.4: χ2
1 Density Curve

corresponding density functions are

f
χ1

(x) =


1√
2π

1√
x

e−x/2 if x > 0;

0 otherwise;
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f
χ3

(x) =


1√
2π

√
x e−x/2 if x > 0;

0 otherwise;

respectively.
The formula for the probability density function of χ2

4 random variable is

f
χ4

(x) =


1
4
x e−x/2 if x > 0;

0 otherwise;

and its graph is shown in Figure 5.3.6.
The χ2

k−1 distribution can be used to estimate the p–value for the case in
which the sample size is so large, and the proportions postulated in the null
hypothesis ar such that the expected values are at least 5. For example, in
the age–distribution class activity, with X2 ∼ χ2

2, we have that

p–value = P (X2 > 17.2) ≈ P (χ2
2 > 17.2).

Since we know the probability density function, f(x), for a χ2
2 random variable,

we can compute the last probability by integration

P (χ2
2 > 17.2) =

∫ ∞

17.2

1
2
e−x/2dx

=
[
−e−x/2

]∞
17.2

= e−8.6 ≈ 1.84× 10−4
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which, again, is a very small probability.
In R, we can estimate the p–value using the pchisq() function as follows

p–value ≈ 1 - pchisq(17.2,2) ≈ 1.84× 10−4.

5.4 Randomization for Chi–Squared Tests

In this section we present a more efficient code in R to perform the goodness of
fit test that we did in Section 5.2 for the class households age distribution data.
It is based on the table() function in R, which provides a table of counts for
categorical data. The code has the added advantage that can be easily modified
for other tests involving the Chi–Squared statistics.

To see how the table() function works, consider the situation described in
Section 5.2 in which there are three categories of ages which may be labeled
“1” for ages between 0 and 18, “2” for those between 19 and 64, and “3” for 65
or above. The proportions of those categories in the entire US population are
26 : 62 : 12, which may be reduced to 13 : 31 : 6. We define a vector made up
of the digits 1, 2 and 3 in proportions 13 : 31 : 6, respectively, as follows:

Cat1 <- rep(1,13)
Cat2 <- rep(2,31)
Cat3 <- rep(3,6)
categories <- c(Cat1,Cat2,Cat3)

This yields the vector whose proportions of 1s ,2s and 3s are 0.26, 0.62 and 0.12,
respectively. The same effect can be achieved by simply typing

categories <- rep(c(1,2,3),c(13,31,6))
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We then use the sample() function in R to obtain a random sample of size 140,
with replacement, from the vector categories:

s <- sample(categories,140,replace = TRUE)

Typing table(s) yields the following out put in R:

s
1 2 3
30 91 19

showing that there are 30 values in category 1, 91 in category 2, and 19 in
category 3. The values in this table can then be used to compute the Chi–
Square statistics as follows:

First, compute the expected values

Exp <- 140*c(13,31,6)/50

Then, store the simulated counts into a vector called Sim:

Sim <- table(s)

Finally, compute the Chi–Square statistic by typing

ChiSqr <- sum((Sim-Exp)^2/Exp)

This process can be repeated many times, Nrep, to obtain a vector called ChiSqr
containing the Chi–Squared values for each of the runs. The distribution of
ChiSqr will approximate the sampling distribution of the Chi–Squared distance
under the assumption that sampling is done from a distribution having the
proportions postulated in the null model. Here is the code that will generate
ChiSqr:

Nrep <- 10000
n <- 140
Prop <- c(0.26, 0.62,0.12)
Exp <- round(n*Prop)

# Computes expected values based on Prop and n
categories <- rep(c(1,2,3),c(13,31,6))
ChiSqr <- array(dim=Nrep) # sets up array ChiSqr
for (i in 1:Nrep) # sets up loop to generate ChiSqr
{

s <- sample(categories,n,replace = TRUE)
# generates sample of size n from categories

Sim <- table(s) # Tabulates counts in each group
ChiSqr[i] <- sum((Sim-Exp)^2/Exp)

# Computes Chi-Squared Statistic
}
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The histogram of ChiSqr is very similar to the one in Figure ChiSqrSimAgeDis-
tHist1. We can estimate the p–value associated with the test using the pHat
function:

p–value ≈ pHat(ChiSqr,17.2) ≈ 0.0001

or about 0.01%; a very small p–value telling us that the evidence is very strong
against the null hypothesis that the age distribution in the class sample follows
that of the entire US population. Hence, the class sample is not representative
of the entire use population regarding age distribution.

5.5 More Examples of Randomization for Chi–
Squared Tests

Example 5.5.1 (Vehicle collisions and cell phones)3 In study done by Don-
ald A. Redelmeier, M.D., and Robert J. Tibshirani, Ph.D., in 1979, which ap-
peared in the New England Journal of Medicine (Association between Cellular–
Telephone Calls and Motor Vehicle Collisions, Volume 336, No. 7, pp. 453-458)
the following data relating to number of collisions and days of the week were
presented:

Day Count
1 Sun 20
2 Mon 133
3 Tue 126
4 Wed 159
5 Thu 136
6 Fri 113
7 Sat 12

We would like to answer the question: Is the number of collisions associated
with the day of the week? The data suggest that collisions are more frequent
during weekdays. Is the evidence suggested by the data statistically significant?
We will answer these questions by doing a goodness of fit test to the null model
that collations are equally likely to occur on any day of the week:

Ho : pi =
1
7

for all i = 1, 2, . . . , 7.

We define a vector in R, called Obs, which has observed counts for each day of
the week. Set k=length(Obs), the number of categories (which in this case is
7). The proportions dictated by the null hypothesis can then be defined in R as
follows

Prop <- rep(1/k,k)

3Adapted from Example 9.14 in Moore, McCabe and Graig, Introduction to the Practice
of Statistics, Sixth Edition, p. 545
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that is, 1/k repeated k times. Set n <- sum(Obs); then, n, is the sample size.
We can then define the vector of expected values by

Exp <- n*Prop

Next, we select a sample of size n with replacement from the set of categories
{1, 2, 3, 4, 5, 6, 7} by using

days <- 1:k
s <- sample(days,n,replace = TRUE)

This simulates collecting a sample with information on which days collisions
occurred. We then use the table() function in R to count how many accidents
occurred in each day. For example, we might get

> table(s)
s
1 2 3 4 5 6 7

103 86 98 105 115 104 88

This is a possible distribution of collisions in week under the null hypothesis.
We store this distribution in a vector called Sim by typing

Sim <- table(s)

We can then compute the Chi–Squared value for this particular simulation by
typing

sum((Sim-Exp)^2/Exp)

and obtain, for this particular case, 6.197425 or about 6.2.
This process can be automated in R and repeated as many times as needed.

Here is the code that runs the simulations

# Simulations for Example 9.14 in the text
Nrep <- 10000
n <- sum(Obs)
k <- length(Obs)
Prop <- rep(1/k,k) # Null Model:

#collisions are equally likely in each day
Exp <- n*Prop # Computes expected values based on Prop and n
days <- 1:k # Labels of groups
ChiSqr <- array(dim=Nrep) # sets up array ChiSqr
for (i in 1:Nrep) # sets up loop to compute ChiSqr
{

s <- sample(days,n,replace = TRUE) # randomization sample
Sim <- table(s) # Counts in each group
ChiSqr[i] <- sum((Sim-Exp)^2/Exp) # Computes Chi-Squared Statistic

}
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This yields a vector ChiSqr with the simulated Chi–Squared values.
The Chi–Squared statistic for the observed values is

Xsqr <- sum((Obs-Exp)^2/Exp)

or about 208.85
The p–value for the goodness of fit test can then be estimated using the pHat

function:

pHat(ChiSqr,Xsqr)

which yields 0. Hence, the data are significant and conclude that the number
of collisions is associated with the day of the week. In fact, collisions are more
frequent during week days.

We next perform the test week days. For this part of the test, we change
the observations vector, Obs, to contain the counts only for Monday through
Friday. This is achieved in R by typing

Obs <- Obs[2:6]

For this set of observations, the Chi–Squared statistic is 8.494753 or about 8.49.
The corresponding p–value is then about 0.0761, which is bigger than the 5%
threshold for significance. We therefore conclude that the weekdays data do not
provide evidence in support of differences due to day of the week.

Example 5.5.2 (Challenger Disaster Data) On January 28, 1986, the space
shuttle Challenger exploded shortly after take-off and disintegrated over the At-
lantic Ocean. It was later discovered that the explosion was due to fuel leakage
caused by an O–ring seal failure. The night before, engineers at the company
which built the shuttle warned NASA that the launch should be postponed due
to predicted low temperatures. Low temperatures had been linked to O–ring
seals failures. The data in Table 5.5 are taken from a graph in Richard P. Feyn-
man’s autobiographical book: What do you care what other people think? (New
York: W. W. Norton, 1988). Feynman was a member of the commission that
investigated the accident.

Launch
Temperature
Below 65◦F 1 1 1 3
Above 65◦F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

Table 5.5: Number of O–ring failures in 24 space shuttle flights prior to
1/28/1986

The question of interest here is: Are O–ring seal failures associated with low
temperatures.

In order to analyze the data using a Chi–Square test, it is helpful to reorga-
nize the information into a table like that shown in Table 5.6.
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Failures > 1? \ Temperature Low High Total
Yes 4 3 7
No 0 17 17
Total 4 20 24

Table 5.6: Observed Values

The null model in this situation is that there is no association between the
number of failures in a launch and the temperature in the day of the lauch.
Thus, failures occur at random regardless of temperature.

To find expected counts based on the null hypothesis, we may proceed as
follows:

Let X denote the number of failures that may occur in a day with low
temperature. The possible values for X are 0, 1, 2, 3 and 4. To find the
probability distribution for X, we compute

P (X = 0) =

(
17
4

)
(

24
4

) ≈ 0.2239789;

P (X = 1) =

(
7
1

)(
17
3

)
(

24
4

) ≈ 0.4479578;

P (X = 2) =

(
7
2

)(
17
2

)
(

24
4

) ≈ 0.2687747;

P (X = 3) =

(
7
3

)(
17
1

)
(

24
4

) ≈ 0.05599473;

P (X = 4) =

(
7
4

)(
17
0

)
(

24
4

) ≈ 0.003293808;

where we have used the R command dhyper(x,7,17,4) for each x = 0, 1, 2, 3, 4,
respectively. The expected value of X is then

E(X) =
4∑

k=0

k · P (X = k)
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which may be computed in R as follows

k <- 0:4
sum(k*dhyper(k,7,17,4))

This yields about 1.167. Thus, the entry in the “Yes” row and column and
“Low” column of the expected values table in Table 5.7 is 1.167. We can fill out
the rest of the entries by considering the marginal totals.

Failures > 1? \ Temperature Low High Total
Yes 1.167 5.833 7
No 2.833 14.167 17
Total 4 20 24

Table 5.7: Expected Values

The Chi–Squared statistic in this case is then 11.65283.
To estimate the p–value of the test, we first generate samples of size 4 from

a vector containing all the values in Table 5.5 and count how many values in
the sample are 1 or greater. Alternatively, we may define the vector

launches <- rep(0:1,c(17,7))

which has seventeen 0s and seven 1s. Next, we sample

low <- sample(launches,4,replace=F)

to simulate four days with low temperature. Then sum(low) will yield the
number of days with low temperature in which there was at least one O–ring
failure. This will be the first entry in a vector that we will call Sim of entries in
table of simulated values. The other entries are obtained as follows

Sim <- array(dim=4)
Sim[1] <- sum(low)
Sim[2] <- 7 -Sim[1]
Sim[3] <- 4 -Sim[1]
Sim[4] <- 13 + Sim[1]

Then, Chi–Squared values for each simulation are given by

sum((Sim-Exp)^2/Exp)

and these can be stored in vector called ChiSqr. The R code performing these
simulations follows:

# Simulations for problem Challenger disaster data
Obs <- c(4,3,0,17)
launches <- rep(0:1,c(17,7))
Nrep <- 10000
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Exp <- c(1.167,5.833,2.833,14.167)
ChiSqr <- array(dim=Nrep)
for (i in 1:Nrep)
{

Sim <- c(0,0,0,0)
low <- sample(launches,4,replace=F)

Sim[1] <- sum(low)
Sim[2] <- 7 -Sim[1]
Sim[3] <- 4 -Sim[1]
Sim[4] <- 13 + Sim[1]

ChiSqr[i] <- sum((Sim-Exp)^2/Exp)
}

The Chi–Squared test statistic for this test is 11.65283 and the corresponding p–
value based on the simulations is 0.0024, or 0.24%. Consequently, the incidence
of O–ring failures is associated with low temperatures.
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Chapter 6

Association Between
Categorical Variables

6.1 Two–Way Tables

Table 5.6, which we obtained in the analysis of the Challenger disaster data in
Example 5.5.2 on page 72, is an example of a two–way table:

Failures > 1? \ Temperature Low High Total
Yes 4 3 7
No 0 17 17
Total 4 20 24

Table 6.1: Two–Way Table for Challenger Disaster Data

Table 6.1 displays a relationship between temperature on the day of a launch and
the incidence of O–ring seal failures. Both variables are displayed as categorical
variables: temperature is either low or high (depending on whether it is below
65◦F or above, respectively), and the incidence of O–ring failures is coded as
“Yes” if there was at least one failure on the day of the launch, or “No” if
there were no failures in that day. The main information contained in Table 6.1
are the counts of launches with more than one O–ring failure incident, or no
incidents, as a function of the temperature (either low or high).

The question of interest in the analysis of two–way tables is whether there
is an association between the variables, or whether they are independent. In
Table 6.1 we see that the proportion of O–ring failure incidents is higher in low
temperature days than in those with high temperatures. So, low temperatures
seem to have a bearing on incidence of O–ring failures. To determine whether
the difference in proportions is significant, we can perform a test in which the

77



78 CHAPTER 6. ASSOCIATION

null hypothesis is

Ho : there is no association between the two variables

or, equivalently,

Ho : the two variables are independent

In order to understand the null hypothesis for this test of significance, we need
to recall the concept of independent random variables. We will also need to
study joint probability distribution as well as marginal distributions.

6.2 Joint Distributions

In order to deal with probabilities for events involving more than one random
variable, we need to define their joint distribution. In this section we only
study the case of two discrete random variables X and Y .

Definition 6.2.1 (Joint probability distribution) Given discrete random
variables X and Y , the joint probability of X and Y is defined by

p(X,Y )(x, y) = P(X = x, Y = y).

Example 6.2.2 Suppose three chips are randomly selected from a bowl con-
taining 3 red, 4 white, and 5 blue chips.

Let X denote the number of red chips chosen, and Y be the number of white
chips chosen. We would like to compute the joint probability function of X and
Y ; that is,

P(X = x, Y = y),

were x and y range over 0, 1, 2 and 3.
For instance,

P(X = 0, Y = 0) =

(
5
3

)(
12
3

) =
10
220

=
1
22

,

P(X = 0, Y = 1) =

(
4
1

)
·
(
5
2

)(
12
3

) =
40
220

=
2
11

,

P(X = 1, Y = 1) =

(
3
1

)
·
(
4
1

)
·
(
5
1

)(
12
3

) =
60
220

=
3
11

,

and so on for all 16 of the joint probabilities. These probabilities are more easily
expressed in tabular form:

Notice that the probability distributions for the individual random variables
X and Y can be obtained as follows:

p
X

(i) =
3∑

j=0

P (i, j)← adding up ith row
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X\Y 0 1 2 3 Row Sums
0 1/22 2/11 3/22 2/110 21/55
1 3/22 3/11 9/110 0 27/55
2 3/42 3/55 0 0 27/220
3 1/220 0 0 0 1/220

Column Sums 14/55 28/55 12/55 1/55 1

Table 6.2: Joint Probability Distribution for X and Y , p(X,Y )

for i = 1, 2, 3, and

p
Y
(j) =

3∑
i=0

P (i, j)← adding up jth column

for j = 1, 2, 3.
These are expressed in Table 6.2 as “row sums” and “column sums,” respec-

tively, on the “margins” of the table. For this reason p
X

and p
Y

are usually
called marginal distributions.

Definition 6.2.3 (Independent Random Variables) The discrete random
variable X and Y are said to be independent if and only if

p(X,Y )(x, y) = p
X

(x) · p
Y
(y)

for all values of x and y.

Observe that, in the previous example (see Table 6.2),

0 = P(X = 3, Y = 1) 6= p
X

(3) · p
Y
(2) =

1
220
· 28
55

,

and therefore X and Y are not independent.

6.3 Test of Independence

We now begin the test of the null hypothesis that temperature on the day of
the launch and incidence of O–ring failures are independent based on the data
in Table 6.1. Using the marginal totals in the table, we can obtain the marginal
probabilities shown in Table 6.3. We have denoted temperature by X and
incidence of O–ring failure by Y .

Note that we are displaying X and Y as categorical variables with values for
X of “Low” or “High,” and for Y of “Cat 1” for 1 or more failures, or “Cat 2”
for no failures.

Assuming the null hypothesis that X and Y are independent, we obtain the
joint probability distribution function by using the formula

p(X,Y )(x, y) = p
X

(x) · p
Y
(y)
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Y \ X Low High p
Y

Cat 1 7/24
Cat 2 17/24
p

X
1/6 5/6 1

Table 6.3: Marginal Distributions for Challenger Disaster Data

Y \ X Low High p
Y

Cat 1 7/144 35/144 7/24
Cat 2 17/144 85/144 17/24
p

X
1/6 5/6 1

Table 6.4: Joint Distribution of X and Y

for all values of x and y. The results are shown in Table 6.4.
The joint probabilities in Table 6.4 can now be used to obtain the expected

values, under the assumption that Ho is true, by multiplying by 24, the sample
size. The expected values are shown in Table 6.5. Note that we could have

Y \ X Low High Row Totals
Cat 1 7/6 35/6 7
Cat 2 17/6 85/6 17
Column Totals 4 20 24

Table 6.5: Expected Values

also obtained the values in Table 6.5 by multiplying the row and column totals
corresponding to each cell and the dividing by the grand total. For example,
the entry in the Cat 1/Low cell is

7 · 4
24

=
7
6
.

Once we have the expected values predicted by the null model, we can com-
pute the Chi–Squared distance

X2 =
∑ (Observed− Expected)2

Expected

from the observed data to the model.
In R, we can automate the calculations of expected values and Chi–Square

distance my making use of the matrix() function and matrix operations in R.
We start out by entering the observed data in Table 6.1 as a 2 × 2 matrix as
follows
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Obs <- matrix(c(4,3,0,17),nrow=2,byrow=T)

The outcome of this is Obs as a 2× 2 matrix

> Obs
[,1] [,2]

[1,] 4 3
[2,] 0 17

which is essentially the two–way table in Table 6.1. Typing dim(Obs) in R
yields

> dim(Obs)
[1] 2 2

which gives the dimensions of the matrix Obs as a vector; the first entry of the
vector gives the number of rows and the second the number of columns. We
could have also entered the matrix Obs by specifying its entries in the vector
c(4,3,0,17) and indicating its dimensions:

Obs <- matrix(c(4,3,0,17), 2,2,byrow=T)

The logical constant byrow has to be set to be TRUE since R enters matrices
column by column by default.

Typing rowSums(Obs) in R yields the row totals in Table 6.1 as a vector.
If we want to get a column vector; that is, a 2 × 1 matrix, we may use the
matrix() function as follows

R <- matrix(rowSums(Obs))

This yields the column vector R

> R
[,1]

[1,] 7
[2,] 17

To obtain a column vector of the column totals in Table 6.1, we type

C <- matrix(colSums(Obs),1,2)

indicating that we want a 1× 2 matrix, or a row vector. The outcome of this is

> C
[,1] [,2]

[1,] 4 20
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The symbol %*% in R denotes the matrix product. Typing R %*% C, for
instance, yields

> R %*% C
[,1] [,2]

[1,] 28 140
[2,] 68 340

which are the products of the row totals and column totals. Dividing by
sum(Obs), the total sum of all the counts, yields the matrix of a expected values

Exp <- (R %*% C)/sum(Obs)

that is,

> Exp
[,1] [,2]

[1,] 1.166667 5.833333
[2,] 2.833333 14.166667

These calculations can be automated into a function that we may call expected
which takes on a matrix of counts and yields the matrix of expected values
based on the null hypothesis that the variables displayed in the two–way table
are independent. Here is the code for the expected() function:

# Computing expected values for 2-way tables
# Enter M: the matrix of counts in 2-way table
expected <- function(M)
{

R <- matrix(rowSums(M))
C <- matrix(colSums(M),1,dim(M)[2])
E <- (R %*% C)/sum(M)
return(E)

}

Typing Exp <- expected(Obs) then yields the matrix, Exp, of expected values.
Once we have the expected values, we can compute the Chi–Squared distance
as usual

Xsqr <- sum((Obs - Exp)^2/Exp)

or about 11.65714.
Next, we estimate the probability that the Chi–Squared distance is Xsqr or

higher under the assumption that the null hypothesis is true; in other words,
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the p–value for the test of independence. To do so, we may proceed as we
did in Example 5.5.2 by performing many simulations of 4 launches at low
temperature out of the 24, and computing the proportion of times that the
Chi–Squared distance is as high or higher than the observed value. However,
there is a better way to do this that makes use of the matrix operations and
the table() function in R. The code has the advantage that it can be applied
to two–way tables of any dimension. This will be done in the next section.

6.4 Permutation Test of Independence for Two-
Way Tables

We present here a variation of the randomization procedure used in the analysis
of the Westvaco data which can be used in the analysis of two-way tables. We
will first apply it to the specific case of the Challenger disaster data and then
write a code that can be applied to any two–way table. The idea is to look at
all possible permutations of the vector RowGroups defined by

RowGroups <- rep(1:2,c(7,17))

RowGroups consists of 7 ones, corresponding to the group of launches with one
or more failure, and 17 twos, corresponding to the launches with no failures.
Typing

perms <- sample(RowGroups, length(RowGroups ))

yields a sample without replacement of length the size of RowGroups from the
vector RowGroups; for example,

> perms
[1] 1 1 2 2 2 1 2 1 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2

This is an example of a permutation of the vector RowGroups. If we now group
this permutation according to 4 days of low temperature and 20 days of high
temperature, then we simulate selecting 4 days at random from the RowGroups
vector to be four launches at low temperature. The random selection is in
accord with the null hypothesis of no association between temperature and O–
ring failure. The simulations can be accomplished in R by means of the table()
function as follows:

First, type

ColGroups <- rep(1:2,c(4,20))

corresponding to a grouping according to low temperature (category “1”), or
high temperature (category “2”). Typing
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Sim <- table(perms,ColGroups)

yields

> Sim
ColGroups

perms 1 2
1 2 5
2 2 15

This is a tabulation of how many 1s in the permutation sample fall in column–
group 1 or column–group 2 in the first row of counts, and how many 2s fall in
the column–group 1 or column–group 2 in the second row. To see more closely
how this works, write the permutation sample above the ColGroups vector

[1] 1 1 2 2 2 1 2 1 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2
[1] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

and note that two 1s in the perms vector match with two 1s in the ColGroups
vector while five 1s in the perms vector match with five 2s in the ColGroups
vector.

The table in Sim corresponds to a simulated table of counts under the as-
sumption that the hull hypothesis of independence is true. This is shown in
Table 6.6.

Y \ X Low High Row Totals
Cat 1 2 5 7
Cat 2 2 15 17
Column Totals 4 20 24

Table 6.6: Simulated Values

Typing

sum((Sim - Exp)^2/Exp)

computes the Chi–Squared statistic associated with this simulated sample. In
this particular example we get 1.008403. This process can be repeated many
times storing the Chi–Squared values in a vector called ChiSqr whose distribu-
tion approximates the sampling distribution of the Chi–Squared statistic. The
code given below automates this process by defining a function IndepTest which
takes on a matrix of observed values and the number of repetitions. The code
assumes that the expected() function has already been defined.
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# Permutation Test of Independence for 2-way tables
#
# Enter a matrix, M, of observed counts in 2-way table
# and the number of repetitions, N
# This code assumes that the expected() function has
# been defined.
#
IndepTest <- function(M,N)

{
Exp <- expected(M) # computes expected values
CS <- array(dim=N) # sets up array dimension N
RowGroups <- rep(1:dim(M)[1],rowSums(M))

# sets up row groups
L <- length(RowGroups)
ColGroups <- rep(1:dim(M)[2],colSums(M))

# sets up column groups
for (k in 1:N)
{

perms <- sample(RowGroups,L)
Sim <- table(perms,ColGroups)
CS[k] <- sum((Sim-Exp)^2/Exp)

}
return(CS)
}

Typing ChiSqr <- IndepTest(Obs,10000) produces an array of 10, 000 values
of the Chi–Squared statistic resulting from a permutation test of independence
for the two–way table counts contained in

Obs <- matrix(c(4,3,0,17), 2,2,byrow=T)

The histogram of ChiSqr is shown in Figure 6.4.1.
We can now use the pHat() function to estimate the p–value for the test of

independence:
p–value ≈ pHat(ChiSqr,Xsqr) ≈ 0.0029

or about 0.29%. We can therefore reject the null hypothesis of no association and
conclude that the evidence is statistically significance in support of the assertion
that the incidence of O–ring failures is associated with low temperatures.

6.5 More Examples of Permutation Tests for In-
dependence

In this section we present more examples in which we use the IndepTest()
function defined in the previous section to test the independence of categorical
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Figure 6.4.1: Histogram of ChiSqr

variables whose counts are displayed in two–way tables.

Example 6.5.1 A review of voter registration records in a small town yielded
the following table of the number of males and females registered as Democrat,
Republican, or some other affiliation:

Affiliation \ Gender Male Female
Democrat 300 600
Republican 500 300
Other 200 100

Table 6.7: Data for Example 6.5.1

Perform a permutation test to determine whether or not there is association
between gender and political party affiliation for the voters in the town.

We first enter the counts in Table 6.7 as a 3× 2 matrix as follows

Obs <- matrix(c(300,600,500,300,200,100), 3,2,byrow=T)

This yields

> Obs
[,1] [,2]

[1,] 300 600
[2,] 500 300
[3,] 200 100
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We can then type ChiSqr <- IndepTest(Obs,10000) to obtain ChiSqr as be-
fore. The histogram of ChiSqr is shown in Figure 6.5.2.

Histogram of ChiSqr
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Figure 6.5.2: Histogram of ChiSqr

To estimate the p–value based on the distribution of ChiSqr, we first compute
the expected values under the assumption of no association between gender and
political affiliation. Using the the expected() function defined previously we
obtain

> Exp <- expected(Obs)
[,1] [,2]

[1,] 450 450
[2,] 400 400
[3,] 150 150

Knowing the expected values, we compute the Chi–Squared value, Xsqr, for the
data. In this case we obtain that Xsqr is about 183.3.

Next, use the pHat() function to estimate the p–value for the test of inde-
pendence:

p–value ≈ pHat(ChiSqr,Xsqr) ≈ 0.

Thus, the data in Table 6.7 are statistically significant and therefore we have
strong evidence to reject the null hypothesis of independence and conclude that
there is a strong association between gender and party affiliation.

Remark 6.5.2 Figure shows a density histogram of ChiSqr for the previous
example as well as the graph of the density function for a χ2

2 distribution.
Figure 6.5.3.

The graph in Figure 6.5.3 shows that the distribution for ChiSqr in Example
6.5.1 can be approximated by that of a χ2 random variable with 2 degrees of
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Figure 6.5.3: Density Histogram of ChiSqr and χ2
2 Density

freedom. In general, for large total counts in an r × c two–way table, and
expected values 5 or bigger, the distribution for the Chi–Squared distance can
be approximated by a χ2 distribution with

df = (r − 1)(c− 1)

degrees of freedom, where r denotes the number of rows and c the number of
columns in the table. The p–value for the test of independence in the previous
example can then be approximated by

p–value ≈ 1 - pchisq(Xsqr,2) ≈ 0.

Example 6.5.3 A specific type of electronic sensor has been experiencing fail-
ures. The manufacturer has studied 200 of these devices and has determined
the type of failure (A, B, C) that occurred and the location on the sensor where
the failure happened (External, Internal). The following table summarizes the
findings:

Location \ Type A B C Total
Internal 50 16 31 97
External 61 26 16 103
Total 111 42 47 200

Table 6.8: Data for Problem 6.5.3

Test the null hypothesis is that there is no association between Type of
Failure and Location of Failure.
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We proceed as in the previous example. This time the observed values are

Obs <- matrix(c(50,16,31,61,26,16), 2,3,byrow=T)

The outcome of this is the 2× 3 matrix

> Obs
[,1] [,2] [,3]

[1,] 50 16 31
[2,] 61 26 16

The expected values, assuming that there is no association between the type of
failure and location of failure, are obtained by typing Exp <- expected(Obs),
where the expected() function has been defined previously. We obtain

> Exp
[,1] [,2] [,3]

[1,] 53.835 20.37 22.795
[2,] 57.165 21.63 24.205

The Chi–Squared distance is then obtained from

Xsqr <- sum((Obs-Exp)^2/Exp)}.

This yields a value of about 8.085554.
To estimate the p–value for the test, we run the IndepTest() function to

obtain an array ChiSqr by typing

ChiSqr <- IndepTest(Obs,10000)

The p–value can then be estimated by

p–value ≈ pHat(ChiSqr,Xsqr) ≈ 0.0185.

Hence, the p–value is about 1.85%. Thus, we can reject the null hypothesis
at the 5% significance level. We can then say that there is strong evidence to
suggest that there is an association between the type of failure and the location.



90 CHAPTER 6. ASSOCIATION



Appendix A

Calculations and Analysis
Using R

A.1 Introduction to R

In this section we present an introduction to R, an integrated suite of programs
that are useful in analyzing data and producing graphical displays.

R is free and may be downloaded from

http://cran.stat.ucla.edu/

Follow the instructions to download according to the computer platform that
you have. It is available for Windows, MacOS X and Linux.

R is being developed by the R Project for Statistical Computing whose web-
site is at http://www.r-project.org/. In that website you will find links to
resources to learn about R; in particular, there is an introduction to R in the
Manuals link.

In this section, we introduce R in the context of analyzing the data in Ac-
tivity #1: An Age Discrimination Case? The data consist of information on 50
employees at the envelope division of the Westvaco corporation in 1991 (see Dis-
play 1.1 on page 9). The data are also provided in an MS Excel file Westvaco.xls
which may be downloaded from

http://pages.pomona.edu/~ajr04747/

We first see how to enter Westvaco data in the MS Excel file into R. When
dealing with small data sets like this one, the simplest thing to do is to read
the data from the “clipboard.” This is done by first selecting the data in the
MS Excel file and copying into the clipboard. It is convenient to have the data
in columns where the cell at the top in each column contains the name of the
variable that the column’s values describe (in other words, a column heading).

From the command line console window in R type

91
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WestvacoD <- read.delim("clipboard")

This will read the data in the clipboard in a dataframe called WestvacoD.
Typing WestvacoD in the command line at the console will display the table of
values with variable names at the top of each column.

Alternatively, we can place the contents of the clipboard into a text file and
then read the data in the text file from the R console. We do this as follows:
After you copy the data to the clipboard in Excel, open a text editor (not a word
processor) and paste the data into a text file that you may name myTable.txt.
Then, in the console window of R, type:

myDataFrame <- read.table("myTable.txt")

(make sure that the data file is in the directory in which you are working when
you use this command). This should load the into the dataframe myDataFrame.

A.2 Exploratory Data Analysis of Westvaco Data

We can extract that data contained in the RIF and Age columns, respectively,
by using the $ operator as follows

RIF <- WestvacoD$RIF

and

Age <- WestvacoD$Age

We now have the ages of all the workers in the Envelope Division at Westvaco at
the beginning of 1991 and their corresponding job status in the data vectors RIF
and Age, respectively. Both variables contain information about each individual
in the population of workers in the envelope division at Westvaco. RIF puts the
workers into categories named 0, 1, 2, etc. depending on whether the workers
were not laid off in the first, second, etc. rounds of layoffs. Thus, RIF is
an example of a categorical variable. Age is an example of a quantitative
variable.

Quantitative variables are usually the results of counts or measurements.
We can get a picture of the values of Age by using a histogram, or a display
of all values that a quantitative variable can take and their frequencies. In R, a
histogram of Age is obtained by typing:

hist(Age)

R then displays the histogram of the variable Age in a graphics window, which
can be printed or saved as a postcript file by right-clicking on the display and
making a selection. The histogram is shown in Figure A.2.1.

The histogram in Figure A.2.1 displays the distribution of the variable Age;
that is, its values and how often they occur. The distribution of of a quantitative
variable can also be described numerically. Typing
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Figure A.2.1: Age Distribution at Westvaco Envelope Division in 1991

summary(Age)

in R yields

Min. 1st Qu. Median Mean 3rd Qu. Max.
22.00 37.25 53.00 48.24 56.00 69.00

displaying the minimum, first quartile, median, mean, third quartile and maxi-
mum values of the variable Age. The mean is the average age of all the workers
in the division and can also be obtained in R by typing

mean(Age)

The median is an age value for which half of the ages are above it and the other
half below. Both mean and median are referred to as measures of centrality.
They provide an idea of where the middle or center of the distribution is located.

The first quartile is a value for which one quarter of the values, or 25%, are
below it and 75% ar above it. Similarly, 75% of the values are below the third
quartile and 25% are above it.

The values minimum, maximum, mean, median and quartiles are examples
of parameters, when referring to a population, or statistics, when derived
from sample data. In this particular case, the fifty workers in the envelope
division of Westvaco can be thought of as the population of workers in the
Envelops Division of Westvaco at the beginning of 1991, or a sample (although
not a random or representative one) of the entire population of workers in the
company.
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The five statistics (or parameters) minimum, first quartile, median, third
quartile and maximum are usually referred to as the five-number summary
for the given variable. These can be used to provide another picture of the
distribution known as a box plot. We can obtain a box plot of Age in R by
typing

boxplot(Age, ylab=’Age’)

This will yield the graphics shown in Figure A.2.2. The box in Figure A.2.2
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Figure A.2.2: Age Distribution at Westvaco Envelope Division in 1991

gives the boundaries of where 50% of the ages lie. The horizontal line in the box
gives the median of the distribution. The two smaller horizontal lies joined to
the box by the dashed vertical lines give the extreme values of the distribution.

A.3 Operations on vectors and programming

In this section we show how to use R to pick out particular entries in the Age
vector based on the status given in the RIF variable. In particular, we would
like to define a new variable which contains the ages of those workers that were
fired by Westvaco in any of the 5 rounds of layoffs; that is, those workers for
which the RIF column as an entry bigger than or equal to 1. In order to do
this, we use the if ... then ... else logical structure in R as well as the
looping capability of the for function. Here is the code we will use

laidoff <- array(dim = 0) # define data structure
L <- length(Age) # length of Age vector, or 50
for (i in 1:L) # sets up for loop to length of Age
{ # begins loop
if (RIF[i]>=1) # Checks if worker has been laid off
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laidoff <- c(laidoff,Age[i]) # append age if laid off
} # end for loop

This code may be put into a script in a .R file and sourced after the vectors RIF
and Age have been detached from the dataframe containing the Westvaco data.

We start out by defining the name of the variable that we would like to
output: laidoff. At the end of the script laidoff will be a vector containing
the ages of all the workers in the Envelope Division of Westvaco that were laid
off in all five rounds of layoffs. The command array(dim =0) essentially gives
an empty array. The function length(Age) gives the number of entries in the
Age vector (which we happen to know is 50). The command for (i in 1:L)
sets up a loop indexed by i running from 1 to 50. Typing Age[i] in R will
yield the ith entry in the vector Age. For instance, Age[44] will give the age of
Robert Martin, who was 54 years old at the beginning of 1991. Typing RIF[44]
yields 2, which says that Martin was laid off in the second round.

The expression RIF[i]>=1 is either TRUE or FALSE depending on the value
of i. For instance, typing RIF[44]>=1 yields a TRUE value; while typing
RIF[1]>=1 yields a FALSE value. On the other hand, RIF[44]==0 will be
FALSE, while RIF[1]==0 is TRUE.

As an aside, type 0 + RIF[44]>=1 to get 1 and 0 + RIF[1]>=1 to get 0.
In general, n+(RIF[i]>=1), will add 1 to n if RIF[i]>=1 is TRUE, or 0 if it is
FALSE. This structure allows one to count the number of times that a certain
condition holds true.

The structure

if (condition) 〈action〉

will perform the specified action if the condition holds true; and it will not do
anything if the condition if false. On the other hand,

if (condition) 〈action 1 〉 else 〈action 2 〉

will perform action 1 if the condition is TRUE, or action 2 if the condition is
FALSE.

Thus, the R command

if (RIF[i]>=1) laidoff <- c(laidoff,Age[i])

will append the age of the ith worker only if the worker has been laid off.
In a similar way, we can pick out the ages of the workers that kept their jobs

in the Envelope Division at Westvaco in 1991 by running the R script

kept <- array(dim = 0)
L <- length(Age)
for (i in 1:L)
{
if (RIF[i]==0) kept <- c(kept,Age[i])
}
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This script will yield the vector kept which contains the ages of those workers
who kept their jobs.

Once the vectors laidoff and kept we can compute the average age of those
workers that were laid off with that of the workers that remained. We can also
plot the distribution of the two variables using the boxplot function as follows

boxplot(laidoff,kept, names=c("Laid off", "Kept"), ylab="Age")

The output of this function is shown in Figure A.3.3. The figure gives a strong
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Figure A.3.3: Comparing distribution of ages of laid off versus kept workers

graphical indication of an age bias against older workers by Westvaco.

A.4 Automating simulations with R

In this section we present some codes in R that can be used to automate sim-
ulations. We begin with an example which performs permutations on a subset
of the Westvaco data, computes means of random samples and stores them in
a vector called Xbar.

# Author: Adolfo J. Rumbos
# Date: 9/3/2008
#
# This R code performs a permutation test on a subset of
# the Westvaco data found on page 5 of Statistics in Action
# by Cobb, Sheaffer and Watkins.
#
#
# The subset consists of the 10 hourly workers involved
# the second of the five rounds of layoffs. Three of the
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# ten workers were laid off in that round.
#
# The 10 hourly workers involved in the 2nd round of layoffs
# are entered into a vector called hourly2
#

hourly2 <- c(25,38,56,48,55,64,55,55,33,35)

Nsamples <- 1000 # Nsamples is the number of samples drawn

#
# Nsamples random samples of size 3, without replacement,
# in a vector from hourly2 and their averages are computed
# and stored denoted Xbar
#
Xbar <- mean(sample(hourly2,3,replace=F))

# sets initial value of x_bar

l <- Nsamples -1 # we need Nsamples - 1 more samples

for (i in 1:l) # Sets up a loop from 1 to Nsamples

{ # Begins body of loop

Xbar <- c(Xbar, mean(sample(hourly2,3,replace=F)))
# creates vector of average ages of
# laid off workers.

The following code performs random sampling and computes Chi–Squared
statistics for a goodness of fit test. The sampled values are taken from a uniform
distribution over the interval (0, 1) by means of the runif() function in R. The
code computes Chi–Squared values for each run of the simulation and stores
them in a vector named ShiSqr.

# Author: Adolfo J. Rumbos
# Date: November 12, 2008

# Simulating sampling from a population with age distribution
#
# Category 1 (Ages 0-18) : 0.26
# Category 2 (Ages 18-64) : 0.62
# Category 3 (Ages 64+ ) : 0.12
# Samples of size n are collected from a uniform distribution
# over the interval (0,1). Values between 0 and 0.26 are placed
# into category 1; values between 0.26 and 0.88 into Category 2, etc.
# Counts for each category are placed into the vector SimObs.
# These are then used to compute Chi-Squared statistics and placed into
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# a vector ChiSqr. The process is repeated Nrep times.

n <- 140 # sample size
Prop <- c(0.26,0.62,0.12) # Proportions postulated by null model
Exp <- round(n*Prop) # Computes expected values

Nrep <- 10000 # Number of repetitions
ChiSqr <- array(dim=Nrep)
for (k in 1:Nrep)
{
SimObs <- c(0,0,0) # Initializes counts
s <- runif(n,0,1) # Generates n randoms numbers between 0 and 1

for (i in 1:n) # Sets up loop for obtaining counts in first category
{

SimObs[1] <-SimObs[1] + (s[i]>=0 & s[i]<=Prop[1])
# adds 1 to first counter

}
for (i in 1:n) # Sets up loop for counts in second category
{

SimObs[2] <-SimObs[2] + (s[i]>Prop[1] & s[i]<=Prop[1]+Prop[2])
# adds 1 to second counter

}
SimObs[3] <- n-SimObs[1]-SimObs[2]
ChiSqr[k] <- sum((SimObs-Exp)^2/Exp) # Computes X^2

}

A.5 Defining functions in R

The goal of this section is to show how the function() function in R can be
used to define a function, pHat, which takes in Xbar, the vector of mean ages of
the samples resulting from simulations obtained in the previous section, and the
observed value of 58, and yields the proportion of values in the Xbar vector which
are 58 or higher. This yields an estimate for the p–value in the randomization
test that we performed on the 10 hourly workers involved in the second rounds
of layoffs at Westvaco in Activity #1.

Here is the code:

# Author: Adolfo J. Rumbos
# Date: September 5, 2008

# Randomization Test for Westvato data (continued)
#
# Defining pHat()
#
# This script is to be run after the Simulation2roundHourlyWorkers.R has been
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# run. It assumes that the Xbar vector has been obtained.
# This program defines a function, pHat(), which
# computes the proportion, p_Hat, of samples in the simulation which yield a
# mean greater than or equal to an observed value, obs. This yields
# an estimate of the probability that, under the assumption that Westvaco’s
# choice of the three hourly workers to be laid off was entirely random
# (i.e., each worker, regardless of her or his age, had an equal likelihood
# of being chosen).
#
# The function takes on the two arguments: X and obs, where
# X is a vector that contains values for a test statistic obtined from
# many repetions of a sampling, and obs is the value of the statistic
# observed in the data.
# The result is the proportion of samples that yield a test statistic
# equal to, or larger than, the observed value
#
#
pHat <- function(X,obs) # Sets up to define the function Phat
{
L<-length(X) # Computes length of X

NYes <- 0 # Sets up counter of "yeses"

for (i in 1:L) # Sets up loop through vector X

{ NYes <-NYes +(X[i]>=obs) }
# adds 1 to counter if X[i]>= obs

result <- NYes/L # Computes proportion of NYes in L

return(result) # Returns estimate of p_hat
}

The structure function() takes any number of objects (arrays, vectors,
matrices, constants, etc.) and returns another another object, in this case it
returns a value. Typing

p_hat <- pHat(Xbar,58)

stores in p_hat the proportion of times that the values in the vector Xbar are
at least 58. Any vector and any observed value can be input into the pHat()
function in place of Xbar and 58, respectively.

The definition of pHat() given above has three parts:

• The line

pHat <- function(X,obs)
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established the name of the function and the names of the objects the
function will be taking in.

• A code for calculations involving the objects input to functions is placed in
braces. The result of the calculations is placed in an object called result

• The result of the calculations is then returned by the statement

return(result)

A modification of the code for pHat() yields a code for function CumDist()
which computes the cumulative distribution function for a random variable
based on its set of values on a sample space given in a vector X. Here is the
modification

# Author: Adolfo J. Rumbos
# Date: September 23, 2008

# Defining a cumulative distribution function CumDist()
#
# The function takes on the two arguments: X and v, where
# X is a vector that contains values for a test statistic obtained from
# the sample space of an experiment, and v is a value.
# The result is the proportion of samples that yield a value less than
# or equal to v
#
CumDist <- function(X,v) # Sets up to define the function Phat
{
L<-length(X) # Computes length of X
NYes <- 0 # Sets up counter of "yeses"
for (i in 1:L) # Sets up loop through vector X
{ NYes <- NYes +(X[i]<=v) # adds 1 to counter
if Xbar[i]<= v } result <- NYes/L # Computes proportion of NYes in L
return(result) # Returns cumulative distribution value
}
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