Assignment #10

Due on Monday, October 26, 2009

Read Section 7.4 on The Derivative, pp. 187–197, in Bressoud.

Read Section 7.6 on The Chain Rule, pp. 201–205, in Bressoud.

Do the following problems

1. Let $U = \mathbb{R}^n \setminus \{\mathbf{0}\} = \{v \in \mathbb{R}^n \mid v \neq \mathbf{0}\}$ and define $f \colon \mathbb{R}^n \to \mathbb{R}$ by

$$f(v) = ||v||$$
 for all $v \in \mathbb{R}$.

- (a) Prove that f is differentiable on U.
- (b) Prove that f is not differentiable at the origin in \mathbb{R}^n .
- 2. Let *I* be and open interval of real numbers, and suppose that $\sigma: I \to \mathbb{R}^n$ is a differentiable path satisfying $\sigma(t) \neq \mathbf{0}$ for all $t \in I$. Show that the function $g: I \to \mathbb{R}$ defined by $g(t) = \|\sigma(t)\|$ for all $t \in I$ is differentiable on *I* and compute its derivative.
- 3. Let I be an open interval of real numbers and U be an open subset of \mathbb{R}^n . Suppose that $\sigma: I \to \mathbb{R}^n$ is a differentiable path and that $f: U \to \mathbb{R}$ is a differentiable scalar field. Assume also that the image of I under σ , $\sigma(I)$, is contained in U. Suppose also that the derivative of the path σ satisfies

$$\sigma'(t) = -\nabla f(\sigma(t)) \quad \text{for all } t \in I.$$

Show that if the gradient of f along the path σ is never zero, then f decreases along the path as t increases.

Suggestion: Use the Chain Rule to compute the derivative of $f(\sigma(t))$.

4. A set $U \subseteq \mathbb{R}^n$ is said to be **path connected** iff for any vectors x and y in U, there exists a differentiable path $\sigma : [0,1] \to \mathbb{R}^n$ such that $\sigma(0) = x$, $\sigma(1) = y$ and $\sigma(t) \in U$ for all $t \in [0,1]$; i.e., any two elements in U can be connected by a differentiable path whose image is entirely contained in U.

Suppose that U is an open, path connected subset of \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f(x)$ is the zero vector for all $x \in U$. Prove that f must be constant.

5. Exercises 2 and 4 on page 207 in the text.