Assignment \#12

Due on Monday, November 16, 2009
Read Section 3.1 on The Calculus of Curves, pp. 53-65, in Bressoud.
Read Section 5.2 on Line Integrals, pp. 113-119, in Bressoud.
Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \text { for } 0 \leqslant t \leqslant \pi
$$

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ for all $(x, y, z) \in \mathbb{R}^{3}$. Evaluate $\int_{C} f$.
2. Let $f(x, y)=y$ for all $(x, y) \in \mathbb{R}^{2}$. For each of the following curves, C, in the plane, evaluate $\int_{C} f$.
(a) C is the segment along the x axis from $(0,0)$ to $(1,0)$.
(b) C is the segment along the y axis from $(0,0)$ to $(0,1)$.
(c) C is the unit circle in \mathbb{R}^{2}.
3. Exercise 10 on page 120 in the text.
4. Exercise 12 on page 120 in the text.
5. Let f be a real valued function which is C^{1} in an open interval containing the closed an bounded interval $[a, b]$. Define C to be the portion of the graph of f over $[a, b]$; that is,

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid y=f(x), a \leqslant x \leqslant b\right\} .
$$

(a) Give a parametrization for C and compute the arc length, $\ell(C)$, of C.
(b) Compute the arc length along the graph of $y=\ln x$ from $x=1$ to $x=2$. Note: In order to do part (b), you'll need to remember, or review, everything you learned about evaluating integrals in your single variable Calculus courses.

