Assignment \#13

Due on Wednesday, November 18, 2009
Read Section 3.1 on The Calculus of Curves, pp. 53-65, in Bressoud.
Read Section 5.2 on Line Integrals, pp. 113-119, in Bressoud.
Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \text { for } 0 \leqslant t \leqslant \pi
$$

Let $F(x, y, z)=x \widehat{i}+y \widehat{j}+z \widehat{k}$, for all $(x, y, z) \in \mathbb{R}^{3}$, be a vector field in \mathbb{R}^{3}. Evaluate the line integral $\int_{C} F \cdot T \mathrm{~d} s$; that is, the integral of the tangential component of the field F along the curve C.
2. Evaluate

$$
\int_{C} y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} z
$$

where C is the directed line segment from the point $(1,1,0)$ to the point $(3,2,1)$ in \mathbb{R}^{3}.
3. Exercises $1(\mathrm{a})(\mathrm{b})(\mathrm{c})$ on page 119 in the text.
4. Exercises $1(\mathrm{~d})(\mathrm{e})(\mathrm{f})$ on page 119 in the text.
5. Let $f: U \rightarrow \mathbb{R}$ be a C^{1} scalar field defined on an open subset U of \mathbb{R}^{n}. Define the vector field $F: U \rightarrow \mathbb{R}^{n}$ by $F(x)=\nabla f(x)$ for all $x \in U$. Suppose that C is a C^{1} simple curve in U connecting the point x to the point y in U. Show that

$$
\int_{C} F \cdot T=f(y)-f(x)
$$

Conclude therefore that the line integral of F along a path from x to y in U is independent of the path connecting x to y. The field F is called a gradient field.

