Fall 2009 1

Assignment #13

Due on Wednesday, November 18, 2009

Read Section 3.1 on *The Calculus of Curves*, pp. 53–65, in Bressoud. **Read** Section 5.2 on *Line Integrals*, pp. 113–119, in Bressoud.

Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

$$\sigma(t) = (\cos t, t, \sin t) \quad \text{for} \ \ 0 \le t \le \pi.$$

Let $F(x, y, z) = x \ \hat{i} + y \ \hat{j} + z \ \hat{k}$, for all $(x, y, z) \in \mathbb{R}^3$, be a vector field in \mathbb{R}^3 . Evaluate the line integral $\int_C F \cdot T \ ds$; that is, the integral of the tangential component of the field F along the curve C.

2. Evaluate

$$\int_C yz \, \mathrm{d}x + xz \, \mathrm{d}y + xy \, \mathrm{d}z$$

where C is the directed line segment from the point (1, 1, 0) to the point (3, 2, 1) in \mathbb{R}^3 .

- 3. Exercises 1(a)(b)(c) on page 119 in the text.
- 4. Exercises 1(d)(e)(f) on page 119 in the text.
- 5. Let $f: U \to \mathbb{R}$ be a C^1 scalar field defined on an open subset U of \mathbb{R}^n . Define the vector field $F: U \to \mathbb{R}^n$ by $F(x) = \nabla f(x)$ for all $x \in U$. Suppose that C is a C^1 simple curve in U connecting the point x to the point y in U. Show that

$$\int_C F \cdot T = f(y) - f(x).$$

Conclude therefore that the line integral of F along a path from x to y in U is independent of the path connecting x to y. The field F is called a *gradient field*.