Assignment \#14

Due on Monday, November 23, 2009
Read Section 3.1 on The Calculus of Curves, pp. 53-65, in Bressoud.
Read Section 5.2 on Line Integrals, pp. 113-119, in Bressoud.
Do the following problems

1. Exercise 4 on page 119 in the text.
2. Exercises $6(\mathrm{~d})(\mathrm{e})(\mathrm{f})$ on pages 119 and 120 in the text.
3. Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a C^{1} parametrization of a curve C in \mathbb{R}^{n}. Let $h:[c, d] \rightarrow$ $[a, b]$ be a one-to-one and onto map such that $h^{\prime}(t)>0$ for all $t \in[c, d]$. Define

$$
\gamma(t)=\sigma(h(t)) \quad \text { for all } t \in[c, d] .
$$

$\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ is a called a reparametrization of σ.
Let $F: U \rightarrow \mathbb{R}^{n}$ denote a continuous vector field defined on a region U of \mathbb{R}^{n} which contains the curve C. Show that

$$
\int_{a}^{b} F(\sigma(\tau)) \cdot \sigma^{\prime}(\tau) \mathrm{d} \tau=\int_{c}^{d} F(\gamma(t)) \cdot \gamma^{\prime}(t) \mathrm{d} t
$$

Thus, the line integral $\int_{C} F \cdot T \mathrm{~d} s$ is independent of reparametrization.
4. Let $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ be a C^{1} parametrization of a curve C is \mathbb{R}^{n}. Give a C^{1} reparametrization, $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$, of σ in which the curve C is traversed in the opposite direction as that of σ. What is γ^{\prime} in terms of σ^{\prime} ?
5. The flux of a 2-dimensional vector field,

$$
F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}
$$

across a simple, closed curve, C, is given by

$$
\int_{C} P \mathrm{~d} y-Q \mathrm{~d} x
$$

Compute the flux of the following fields across the given curves
(a) $F(x, y)=x^{2} \widehat{i}+y^{2} \widehat{j}$ and C is the boundary of the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$.
(b) $F(x, y)=x \widehat{i}+y \widehat{j}$ and C is the boundary of the unit disk in \mathbb{R}^{2}.

