Assignment #14

Due on Monday, November 23, 2009

Read Section 3.1 on *The Calculus of Curves*, pp. 53–65, in Bressoud.

Read Section 5.2 on *Line Integrals*, pp. 113–119, in Bressoud.

Do the following problems

- 1. Exercise 4 on page 119 in the text.
- 2. Exercises 6(d)(e)(f) on pages 119 and 120 in the text.
- 3. Let $\sigma: [a,b] \to \mathbb{R}^n$ be a C^1 parametrization of a curve C in \mathbb{R}^n . Let $h: [c,d] \to [a,b]$ be a one-to-one and onto map such that h'(t) > 0 for all $t \in [c,d]$. Define

$$\gamma(t) = \sigma(h(t))$$
 for all $t \in [c, d]$.

 $\gamma \colon [c,d] \to \mathbb{R}^n$ is a called a reparametrization of σ .

Let $F: U \to \mathbb{R}^n$ denote a continuous vector field defined on a region U of \mathbb{R}^n which contains the curve C. Show that

$$\int_{a}^{b} F(\sigma(\tau)) \cdot \sigma'(\tau) d\tau = \int_{c}^{d} F(\gamma(t)) \cdot \gamma'(t) dt.$$

Thus, the line integral $\int_C F \cdot T \, ds$ is independent of reparametrization.

- 4. Let $\sigma: [0,1] \to \mathbb{R}^n$ be a C^1 parametrization of a curve C is \mathbb{R}^n . Give a C^1 reparametrization, $\gamma: [0,1] \to \mathbb{R}^n$, of σ in which the curve C is traversed in the opposite direction as that of σ . What is γ' in terms of σ' ?
- 5. The flux of a 2-dimensional vector field,

$$F(x,y) = P(x,y) \hat{i} + Q(x,y) \hat{j}$$

across a simple, closed curve, C, is given by

$$\int_C P \, \mathrm{d}y - Q \, \mathrm{d}x.$$

Compute the flux of the following fields across the given curves

- (a) $F(x,y) = x^2 \hat{i} + y^2 \hat{j}$ and C is the boundary of the square with vertices (0,0), (1,0), (1,1) and (0,1).
- (b) $F(x,y) = x \hat{i} + y \hat{j}$ and C is the boundary of the unit disk in \mathbb{R}^2 .