Assignment \#15

Due on Monday, November 30, 2009
Read Section 5.4 on Multiple Integrals, pp. 120-134, in Bressoud.

Background and Definitions

- Flux

Let $F=P \widehat{i}+Q \widehat{j}$, where P and Q are continuous scalar fields defined on an open subset, U, of \mathbb{R}^{2}. Suppose there is a C^{1} simple closed curve C contained in U. Then the flux of F across C is given by

$$
\int_{C} F \cdot \hat{n} \mathrm{~d} s=\int_{C} P \mathrm{~d} y-Q \mathrm{~d} x
$$

Here, \widehat{n} denotes a unit vector perpendicular to C and pointing to the outside of C.

- Divergence of a Vector Field in \mathbb{R}^{2}.

Given a C^{1} vector field, $F(x, y)=P(x, y) \widehat{\mathbf{i}}+Q(x, y) \widehat{\mathbf{j}}$, defined on some open subset U of \mathbb{R}^{2}, the divergence of F is defined to be

$$
\operatorname{div} F(x, y)=\frac{\partial P}{\partial x}(x, y)+\frac{\partial Q}{\partial y}(x, y) \quad \text { for all }(x, y) \in U
$$

- Green's Theorem.

Let R denote a region in \mathbb{R}^{2} bounded by a simple closed curve, ∂R, made up of a finite number of C^{1} paths traversed in the counterclockwise sense. Let P and Q denote two C^{1} scalar fields defined on some open set containing R and its boundary, ∂R. Then,

$$
\iint_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y=\oint_{\partial R} F \cdot \widehat{n} \mathrm{~d} s .
$$

Do the following problems

1. Let C denote the unit circle traversed in the counterclockwise direction. Evaluate the line integral $\int_{C} x^{3} \mathrm{~d} y-y^{3} \mathrm{~d} x$.
2. Let $F(x, y)=y \widehat{i}-x \widehat{j}$ and R be the square in the $x y$-plane with vertices (0,0), $(2,-1),(3,1)$ and $(1,2)$. Evaluate $\int_{\partial R} F \cdot n \mathrm{~d} s$.
3. Consider the iterated integral

$$
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y
$$

(a) Identify the region of integration, R, for this integral and sketch it.
(b) Change the order of integration in the iterated integral and evaluate the double integral

$$
\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y
$$

4. What is the region R over which you integrate when evaluating the double integral

$$
\int_{0}^{1} \int_{x^{2}}^{1} x \sqrt{1-y^{2}} \mathrm{~d} y \mathrm{~d} x ?
$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?
5. What is the region R over which you integrate when evaluating the double integral

$$
\int_{1}^{2} \int_{1}^{x} \frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} y \mathrm{~d} x ?
$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?

