Assignment \#2

Due on Monday, September 14, 2009
Read Chapter 2 on Vector Algebra in Bressoud (pp. 29-49).
Do the following problems

1. Recall that the dot product, or inner product, of two vectors in \mathbb{R}^{n} is symmetric, bi-linear and positive definite; that is, for vectors v, v_{1}, v_{2} and w in \mathbb{R}^{n},
(i) $v \cdot w=w \cdot v$
(ii) $\left(c_{1} v_{1}+c_{2} v_{2}\right) \cdot w=c_{1} v_{1} \cdot w+c_{2} v_{2} \cdot w$, and
(iii) $v \cdot v \geqslant 0$ for all $v \in \mathbb{R}^{n}$ and $v \cdot v=0$ if and only if v is the zero vector.

Use these properties of the the inner product in \mathbb{R}^{n} to derive the following properties of the norm $\|\cdot\|$ in \mathbb{R}^{n}, where

$$
\|v\|=\sqrt{v \cdot v} \quad \text { for all vectors } \quad v \in \mathbb{R}^{n} .
$$

(a) $\|v\| \geqslant 0$ for all $v \in \mathbb{R}^{n}$ and $\|v\|=0$ if and only if $v=\overrightarrow{0}$.
(b) For a scalar $c,\|c v\|=|c|\|v\|$.
2. Recall the Cauchy-Schwarz inequality: For any vectors v and w in \mathbb{R}^{n},

$$
|v \cdot w| \leqslant\|v\|\|w\|
$$

Use this inequality to derive the triangle inequality: For any vectors v and w in \mathbb{R}^{n},

$$
\|v+w\| \leqslant\|v\|+\|w\|
$$

(Suggestion: Start with the expression $\|v+w\|^{2}$ and use the properties of the inner product to simplify it.)
3. Given two non-zero vectors v and w in \mathbb{R}^{n}, the cosine of the angle, θ, between the vectors can be defined by

$$
\cos \theta=\frac{v \cdot w}{\|v\|\|w\|}
$$

Use the Cauchy-Schwarz inequality to justify why this definition makes sense.
4. Two vectors v and w in \mathbb{R}^{n} are said to be orthogonal or perpendicular, if and only if $v \cdot w=0$.
Show that if v and w are orthogonal, then

$$
\|v+w\|^{2}=\|v\|^{2}+\|w\|^{2} .
$$

Give a geometric interpretation of this result in two-dimensional Euclidean space.
5. A vector u in \mathbb{R}^{n} is said to be a unit vector if and only if $\|u\|=1$. Let u be a unit vector in \mathbb{R}^{n} and v be any vector in \mathbb{R}^{n}.
(a) Give the parametric equation of the line through origin in the direction of u.
(b) Let $f(t)=\|v-t u\|^{2}$ for all $t \in \mathbb{R}^{n}$. Explain why this function gives the square of the distance from the point at v to a point on the line through the origin in the direction of u.
(c) Show that $f(t)$ is minimized when $t=v \cdot u$.

