Assignment #7

Due on Monday, October 12, 2009

Read Section 7.1 on *Limits*, pp. 171–178, in Bressoud.

Background and Definitions

- (Open Set) A subset, U, of \mathbb{R}^n is said to be **open** if for any $x \in U$ there exists a positive number r such that $B_r(x) = \{y \in \mathbb{R}^n \mid ||y - x|| < r\}$ is entirely contained in U. (The empty set, \emptyset , is considered to be an open set.)
- (Continuous Functions 1) Let U denote an open subset of \mathbb{R}^n . A function $F: U \to \mathbb{R}^m$ is said to be continuous at $x \in U$ if and only if

$$\lim_{\|y-x\|\to 0} \|F(y) - F(x)\| = 0.$$

If F is continuous at every point in U, then F is said to be continuous on U.

- (Pre-image) If B ⊆ ℝ^m, the pre-image of B under the map F: U → ℝ^m, denoted by F⁻¹(B), is defined as the set F⁻¹(B) = {x ∈ U | F(x) ∈ B}. Note that F⁻¹(B) is always defined even if F does not have an inverse map.
- (Continuous Functions 2) Let U denote an open subset of \mathbb{R}^n . A function $F: U \to \mathbb{R}^m$ is continuous on U if and only if, for every open subset V of \mathbb{R}^m , the pre-image of V under $F, F^{-1}(V)$ is open in \mathbb{R}^n .
- (Composition of Continuous Functions) Let U denote an open subset of \mathbb{R}^n and Q an open subset of \mathbb{R}^m . Suppose that the maps $F: U \to \mathbb{R}^m$ and $G: Q \to \mathbb{R}^k$ are continuous on their respective domains and that $F(U) \subseteq Q$. Then, the composition $G \circ F: U \to \mathbb{R}^k$ is continuous on U.

Do the following problems

- 1. Let U denote an open subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is a scalar field and $G: U \to \mathbb{R}^m$ is vector valued function.
 - (a) Explain how the product fG is defined.
 - (b) Prove that if both f and G are continuous on U, then the vector valued function fG is also continuous on U.

Math 107. Rumbos

2. Let U be an open subset of \mathbb{R}^2 . Let $f: U \to \mathbb{R}$ and $g: U \to \mathbb{R}$ be two scalar fields on U, and define $h: U \to \mathbb{R}$ by

$$h(x,y) = f(x,y)g(x,y)$$
 for all $(x,y) \in U$.

Prove that if both f and g are continuous on U, then so is h.

Suggestion: First prove that the function $G \colon \mathbb{R}^2 \to \mathbb{R}$, defined by G(x, y) = xy for all $(x, y) \in \mathbb{R}^2$, is continuous. Then, let $F \colon U \to \mathbb{R}^2$ denote the map given by

$$F(x,y) = (f(x,y), g(x,y)) \text{ for all } (x,y) \in U,$$

and observe that

$$h = G \circ F.$$

- 3. Let $U = \mathbb{R}^n \setminus \{\mathbf{0}\} = \{v \in \mathbb{R}^n \mid v \neq \mathbf{0}\}.$
 - (a) Prove that U is an open subset of \mathbb{R}^n .
 - (b) Define $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(v) = \frac{1}{\|v\|} \quad \text{for all } v \in U.$$

Prove that f is continuous on U.

Suggestion: Note that the function, g, defined by

$$g(t) = \frac{1}{t}$$
 for all $t \neq 0$,

is continuous for $t \neq 0$.

4. Let $I \subseteq \mathbb{R}$ be an open interval and $\sigma: I \to \mathbb{R}^n$ be continuous path in \mathbb{R}^n satisfying $\sigma(t) \neq \mathbf{0}$ for all $t \in I$. Define the function $f: I \to \mathbb{R}$ by

$$f(t) = \frac{1}{\|\sigma(t)\|}$$
 for all $t \in I$.

Prove that f is continuous on I.

5. Exercise 12 on page 180 in the text.