Solutions to Assignment \#12

1. Suppose that you observe n iid $\operatorname{Bernoulli}(p)$ random variables, denoted by $X_{1}, X_{2}, \ldots, X_{n}$. Find the LRT rejection region for the test of $\mathrm{H}_{o}: p \leqslant p_{o}$ versus $\mathrm{H}_{1}: p>p_{o}$ in terms of the test statistic $Y=\sum_{i=1}^{n} X_{i}$.

Solution: The likelihood ratio statistic is

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\sup _{p \leqslant p_{o}} L\left(p \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{p} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

where

$$
L\left(p \mid x_{1}, x_{2}, \ldots, x_{n}\right)=p^{y}(1-p)^{n-y}, \quad \text { for } y=\sum_{i=1}^{n} x_{i}
$$

is the likelihood function, and

$$
\widehat{p}=\frac{1}{n} y=\bar{x}
$$

is the MLE for p.
Observe that if $p_{o} \geqslant \widehat{p}$, then

$$
\sup _{p \leqslant p_{o}} L\left(p \mid x_{1}, x_{2}, \ldots, x_{n}\right)=L\left(\widehat{p} \mid x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and so $\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$; thus, in this case we would not get a rejection region for the LRT,

$$
R: \quad \Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c,
$$

for some $0<c<1$. We therefore have that $p_{o}<\widehat{p}$ so that

$$
\begin{aligned}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{L\left(p_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{p} \mid x_{1}, x_{2}, \ldots, x_{n}\right)} \\
& =\frac{p_{o}^{y}\left(1-p_{o}\right)^{n-y}}{\widehat{p}^{y}\left(1-\widehat{p}_{1}\right)^{n-y}}
\end{aligned}
$$

where $\widehat{p}>p_{o}$, which can in turn be written as

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\left(\frac{\widehat{p}}{p_{o}}\right)^{y}}\left(\frac{\frac{1}{p_{o}}-1}{\frac{1}{p_{o}}-\frac{\widehat{p}}{p_{o}}}\right)^{n-y}
$$

Setting $t=\frac{\widehat{p}}{p_{o}}$, we see that Λ can be written as a function of t as follows

$$
\Lambda(t)= \begin{cases}1 & \text { for } 0 \leqslant t \leqslant 1 \\ \frac{1}{t^{n p_{o} t}} \cdot\left(\frac{1-p_{o}}{1-p_{o} t}\right)^{n-n p_{o} t}, & \text { for } 1<t \leqslant \frac{1}{p_{o}}\end{cases}
$$

since $\widehat{p}>p_{o}$, where we have used the fact that $\widehat{p}=\frac{1}{n} y$ so that $y=n p_{o} t$.
The graph of $\Lambda(t)$ can be shown to be like the one sketched as the one shown in Figure 1 on page 3, where we have sketched the case $p_{o}=1 / 4$ and $n=20$ for $0 \leqslant t \leqslant 4$. The sketch in Figure 1 shows that $\Lambda(t)$ decreases for $t>1$; thus, given any positive value of c such that $c<1$ and $c>p_{o}^{n}$, there exists a positive value t_{2} such that $t_{2}>1$, and

$$
\Lambda\left(t_{2}\right)=c,
$$

and

$$
\Lambda(t) \leqslant c \quad \text { for } t \geqslant t_{2}
$$

Thus, the LRT rejection region for the test of $\mathrm{H}_{o}: p \leqslant p_{o}$ versus $\mathrm{H}_{1}: p>p_{o}$ is equivalent to

$$
\frac{\widehat{p}}{p_{o}} \geqslant t_{2}
$$

which we could rephrase in terms of $Y=\sum_{i=1}^{n} X_{i}$ as

$$
R: \quad Y \geqslant t_{2} n p_{o}
$$

for some t_{2} with $t_{2}>1$. This rejection region can also be phrased as

$$
R: \quad Y>n p_{o}+b,
$$

Figure 1: Sketch of graph of $\Lambda(t)$ for $p_{o}=1 / 4, n=20$, and $0 \leqslant t \leqslant 4$
for some $b>0$. The value of b will then be determined by the significance level that we want to impose on the test, and Y is the statistic

$$
Y=\sum_{i=1}^{n} X_{i}
$$

which counts the number of successes in the sample.
2. Consider the likelihood ratio test for $\mathrm{H}_{o}: p=p_{o}$ versus $\mathrm{H}_{1}: p=p_{1}$, where $p_{o} \neq$ p_{1}, based on a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a $\operatorname{Bernoulli}(p)$ distribution for $0<p<1$. Show that, if $p_{1}>p_{o}$, then the likelihood ratio statistic for the test is is a monotonically decreasing function of $Y=\sum_{i=1}^{n} X_{i}$. . Conclude, therefore, that if the test rejects H_{o} at the significance level α for an observed value \widehat{y} of Y, it will also rejects H_{o} at that level for $Y>\widehat{y}$.

Solution: The likelihood ratio statistic in this case is

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{p_{o}^{y}\left(1-p_{o}\right)^{n-y}}{p_{1}^{y}\left(1-p_{1}\right)^{n-y}}, \quad \text { for } \quad y=\sum_{i=1}^{n} x_{i}
$$

which can be written as

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a^{n} r^{y}
$$

where

$$
a=\frac{1-p_{o}}{1-p_{1}}>0 \quad \text { and } \quad r=\frac{p_{o}\left(1-p_{1}\right)}{p_{1}\left(1-p_{o}\right)}<1,
$$

since $p_{1}>p_{o}$. It then follows that the likelihood ratio statistic for the test is is a monotonically decreasing function of $Y=\sum_{i=1}^{n} X_{i}$, since $r<1$.
Suppose now that the test rejects H_{o} at the significance level α for an observed value \widehat{y} of Y; that is

$$
\Lambda(\widehat{y}) \leqslant c
$$

for some c in $(0,1)$ determined by α. Then, for any value of y which is bigger than \widehat{y},

$$
\begin{equation*}
\Lambda(y)<\Lambda(\widehat{y}) \leqslant c, \tag{1}
\end{equation*}
$$

since Λ is a decreasing function of y. It then follows from (1) that the LRT will also rejects H_{o} at that level for $Y>\widehat{y}$.
3. We wish to use an LRT to test the hypothesis $\mathrm{H}_{o}: \mu=\mu_{o}$ against the alternative $\mathrm{H}_{1}: \mu \neq \mu_{o}$ based on a random sample, $X_{1}, X_{2}, \ldots, X_{n}$, from a normal $(\mu, 1)$ distribution.
(a) Give the maximum likelihood estimator, $\widehat{\mu}$, for μ based on the sample.

Solution: The likelihood function in this problem is

$$
L\left(\mu \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{e^{-\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} / 2}}{(2 \pi)^{n / 2}} \quad \text { for } \mu \in \mathbb{R}
$$

To find the MLE for μ, it suffices to maximize the natural logarithm of the likelihood function

$$
\ell(\mu)=-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\frac{n}{2} \ln (2 \pi), \quad \text { for } \quad \mu \in \mathbb{R}
$$

Taking derivatives we get

$$
\ell^{\prime}(\mu)=\sum_{i=1}^{n}\left(x_{i}-\mu\right)=\sum_{i=1}^{n} x_{i}-n \mu,
$$

and

$$
\ell^{\prime \prime}(\mu)=\sum_{i=1}^{n}\left(x_{i}-\mu\right)=-n<0 .
$$

It then follows that $\widehat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}$ is the only critical point of ℓ and $\ell^{\prime \prime}(\widehat{\mu})<0$. Thus, the likelihood function is maximized at $\widehat{\mu}=\bar{x}$, the sample mean.
(b) Give the likelihood ratio statistic for the test.

Solution: The likelihood ratio statistic is

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{L\left(\mu_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{\mu} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

where $\widehat{\mu}=\bar{x}$ is the MLE for μ. We then have that

$$
\begin{equation*}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{e^{-\sum_{i=1}^{n}\left(x_{i}-\mu_{o}\right)^{2} / 2}}{e^{-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / 2}} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\mu_{o}\right)^{2} & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu_{o}\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n}\left(\bar{x}-\mu_{o}\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n\left(\bar{x}-\mu_{o}\right)^{2}
\end{aligned}
$$

since

$$
\sum_{i=1}^{n} 2\left(x_{i}-\bar{x}\right)\left(\bar{x}-\mu_{o}\right)=2\left(\bar{x}-\mu_{o}\right) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0
$$

Hence, from (2) we have that

$$
\begin{equation*}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=e^{-n\left(\bar{x}-\mu_{o}\right)^{2} / 2} \tag{3}
\end{equation*}
$$

where \bar{x} denotes the sample mean.
(c) Express the LRT rejection region in terms of the sample mean \bar{X}_{n}.

Solution: The LRT rejection region is given by

$$
R: \quad \Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c
$$

for some c with $0<c<1$. It then follows from equation (3) in part (b) of this problem that H_{o} is rejected if

$$
e^{-n\left(\bar{x}-\mu_{o}\right)^{2} / 2} \leqslant c,
$$

or, taking natural logarithm on both sides of the last inequality,

$$
-n\left(\bar{x}-\mu_{o}\right)^{2} / 2 \leqslant \ln c
$$

or

$$
n\left(\bar{x}-\mu_{o}\right)^{2} \geqslant-2 \ln c
$$

or

$$
\sqrt{n}\left|\bar{x}-\mu_{o}\right| \geqslant \sqrt{-2 \ln c} \equiv b>0
$$

Thus, the LRT will reject H_{o} if

$$
\sqrt{n}\left|\bar{X}_{n}-\mu_{o}\right| \geqslant b
$$

for some $b>0$ determined by the significance level α.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a uniform $(0, \theta)$ distribution for some parameter $\theta>0$.
(a) Give the likelihood function $L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)$.

Solution: The pdf for each of the $X_{i} \mathrm{~s}$ is

$$
f(x \mid \theta)= \begin{cases}\frac{1}{\theta} & \text { if } 0<x<\theta \\ 0 & \text { otherwise }\end{cases}
$$

Thus, the likelihood function is

$$
L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}\frac{1}{\theta^{n}} & \text { if } 0<x_{1}, x_{2}, \ldots, x_{n}<\theta \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

(b) Give the maximum likelihood estimator for θ.

Solution: Observe that the likelihood function in (4) is a decreasing function of θ. Thus, $L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)$ will the largest when θ is the smallest value it can take, $\widehat{\theta}$, based on the sample. This value is the maximum of the values $x_{1}, x_{2}, \ldots, x_{n}$, because, if $x_{i}>\theta$ for some i, then $L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=0$ according to the definition of the likelihood function given (4). It then follows that the MLE for θ is

$$
\widehat{\theta}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
$$

5. Let R denote the rejection region for an LRT of $\mathrm{H}_{o}: \theta=\theta_{o}$ versus $\mathrm{H}_{1}: \theta=\theta_{1}$ based on a random sample, $X_{1}, X_{2}, \ldots, X_{n}$, from continuous distribution with pdf $f(x \mid \theta)$. Let $L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)$ denote the likelihood function. Suppose the LRT has significance level α.
(a) Explain why

$$
\alpha=\int_{R} L\left(\theta_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n} .
$$

Answer: The significance level α is the probability the the LRT will reject H_{o} when H_{o} is true; in other words, when $\theta=\theta_{o}$. Thus,

$$
\begin{aligned}
\alpha & =\mathrm{P}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R\right. \\
& =\int_{R} f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{o}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}
\end{aligned}
$$

where R is the rejection region of the LRT and $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid\right.$ θ_{o}) is the joint distribution of the sample for the case in which H_{o} is true. It then follows that

$$
\alpha=\int_{R} L\left(\theta_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n},
$$

by the definition of the likelihood function.
(b) Explain why the power of the test is

$$
\gamma\left(\theta_{1}\right)=\int_{R} L\left(\theta_{1} \mid x_{1}, x_{2}, \ldots, x_{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}
$$

Answer: The power of the test, $\gamma\left(\theta_{1}\right)$, is the probability the the LRT will reject H_{o} when H_{o} is false; in other words, when $\theta=\theta_{1}$. Thus,

$$
\gamma\left(\theta_{1}\right)=\int_{R} f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}
$$

which yields

$$
\gamma\left(\theta_{1}\right)=\int_{R} L\left(\theta_{1} \mid x_{1}, x_{2}, \ldots, x_{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}
$$

by the definition of the likelihood function.
(c) Explain why

$$
\alpha \leqslant c \gamma\left(\theta_{1}\right)
$$

where c is the critical value used in the definition of the rejection region, R, for the LRT.

Solution: Since, $\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c$ on R, for some $c \in(0,1)$ determined by α, it follows that

$$
L\left(\theta_{0} \mid x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c L\left(\theta_{1} \mid x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R$. Consequently,

$$
\int_{R} L\left(\theta_{0} \mid x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant \int_{R} c L\left(\theta_{1} \mid x_{1}, x_{2}, \ldots, x_{n}\right)
$$

from which the result follows in view of parts (a) and (b) of this problem.

