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Chapter 1

Introduction

1.1 Introduction to statistical inference

The main topic of this course is statistical inference. Loosely speaking, statisti-
cal inference is the process of going from information gained from a sample to
inferences about a population from which the sample is taken. There are two
aspects of statistical inference that we’ll be studying in this course: estimation
and hypothesis testing. In estimation, we try to determine parameters from a
population based on quantities, referred to as statistics, calculated from data
in a sample. The degree to which the estimates resemble the parameters be-
ing estimated can be measured by ascertaining the probability that a certain
range of values around the estimate will contain the actual parameter. The use
of probability is at the core of statistical inference; it involves the postulation
of a certain probability model underlying the situation being studied and cal-
culations based on that model. The same procedure can in turn be used to
determine the degree to which the data in the sample support the underlying
model; this is the essence of hypothesis testing.

Before we delve into the details of the statistical theory of estimation and
hypothesis testing, we will present a simple example which will serve to illustrate
several aspects of the theory.

1.1.1 An Introductory Example

I have a hot–air popcorn popper which I have been using a lot lately. It is a
small appliance consisting of a metal, cylindrical container with narrow vents
at the bottom, on the sides of the cylinder, through which hot air is pumped.
The vents are slanted in a given direction so that the kernels are made to
circulate at the bottom of the container. The top of the container is covered
with a hard-plastic lid with a wide spout that directs popped and unpopped
kernels to a container placed next to the popper. The instructions call for
one–quarter cup of kernels to be placed at the bottom of the container and
the device to be plugged in. After a short while of the kernels swirling in hot
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6 CHAPTER 1. INTRODUCTION

air, a few of the kernels begin to pop. Pressure from the circulating air and
other kernels popping an bouncing off around inside the cylinder forces kernels
to the top of the container, then to the spout, and finally into the container.
Once you start eating the popcorn, you realize that not all the kernels popped.
You also notice that there are two kinds of unpopped kernels: those that just
didn’t pop and those that were kicked out of the container before they could
get warm enough to pop. In any case, after you are done eating the popped
kernels, you cannot resit the temptation to count how many kernels did not pop.
Table 1.1 shows the results of 27 popping sessions performed under nearly the
same conditions. Each popping session represents a random experiment.1 The

Trial Number of Uppopped Kernels
1 32
2 11
3 32
4 9
5 17
6 8
7 7
8 15
9 139

10 110
11 124
12 111
13 67
14 143
15 35
16 52
17 35
18 65
19 44
20 52
21 49
22 18
23 56
24 131
25 55
26 59
27 37

Table 1.1: Number of Unpopped Kernels out of 1/4–cup of popcorn

1A random experiment is a process or observation, which can be repeated indefinitely
under the same conditions, and whose outcomes cannot be predicted with certainty before
the experiment is performed.
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number of unpopped kernels is a random variable2 which we obtain from the
outcome of each experiment. Denoting the number of unpopped kernels in a
given run by X, we may postulate that X follows a Binomial distribution with
parameters N and p, where p is the probability that a given kernel will not pop
(either because it was kicked out of the container too early, or because it would
just not pop) and N is the number of kernels contained in one-quarter cup. We
write

X ∼ binom(N, p)

and have that

P (X = k) =

(
N

k

)
pk(1− p)N−k for k = 0, 1, 2, . . . , N,

where (
N

k

)
=

N !

k!(N − k)!
, k = 0, 1, 2 . . . , N.

This is the underlying probability model that we may postulate for this situa-
tion. The probability of a failure to pop for a given kernel, p, and the number of
kernels, N , in one–quarter cup are unknown parameters. The challenge before
us is to use the data in Table 1.1 on page 6 to estimate the parameter p. No-
tice that N is also unknown, so we’ll also have to estimate N as well; however,
the data in Table 1.1 do not give enough information do so. We will therefore
have to design a new experiment to obtain data that will allow us to estimate
N . This will be done in the next chapter. Before we proceed further, we will
will lay out the sampling notions and terminology that are at the foundation of
statistical inference.

1.1.2 Sampling: Concepts and Terminology

Suppose we wanted to estimate the number of popcorn kernels in one quarter
cup of popcorn. In order to do this we can sample one quarter cup from a
bag of popcorn and count the kernels in the quarter cup. Each time we do
the sampling we get a value, Ni, for the number of kernels. We postulate that
there is a value, �, which gives the mean value of kernels in one quarter cup of
popcorn. It is reasonable to assume that the distribution of each of the Ni, for
i = 1, 2, 3, . . ., is normal around � with certain variance �2. That is,

Ni ∼ normal(�, �2) for all i = 1, 2, 3, . . . ,

so that each of the Nis has a density function, f
N

, given by

f
N

(x) =
1√
2��

e−
(x−�)2

2�2 , for −∞ < x <∞.

2A random variable is a numerical outcome of a random experiment whose value cannot
be determined with certainty.
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Hence, the probability that the number of kernels in one quarter cup of popcorn
lies within certain range of values, a ⩽ N < b is

P (a ⩽ N < b) =

∫ b

a

f
N

(x) dx.

Notice here that we are approximating a discrete random variable, N , by a
continuous one. This approximation is justified if we are dealing with large
numbers of kernels, so that a few kernels might not make a large relative differ-
ence. Table 1.2 shows a few of those numbers. If we also assume that the Nis

Sample Number of Kernels
1 356
2 368
3 356
4 351
5 339
6 298
7 289
8 352
9 447

10 314
11 332
12 369
13 298
14 327
15 319
16 316
17 341
18 367
19 357
20 334

Table 1.2: Number of Kernels in 1/4–cup of popcorn

are independent random variables, then N1, N2, . . . , Nn constitutes a random
sample of size n.

Definition 1.1.1 (Random Sample). (See also [HCM04, Definition 5.1.1, p
234]) The random variables, X1, X2, . . . , Xn, form a random sample of size n on
a random variable X if they are independent and each has the same distribution
as that of X. We say that X1, X2, . . . , Xn constitute a random sample from the
distribution of X.

Example 1.1.2. The second column of Table 1.2 shows values from a random
sample from from the distribution of the number of kernels, N , in one-quarter
cup of popcorn kernels.
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Given a random sample, X1, X2, . . . , Xn, from the distribution of a random
variable, X, the sample mean, Xn, is defined by

Xn =
X1 +X2 + ⋅ ⋅ ⋅+Xn

n
.

Xn is an example of a statistic.

Definition 1.1.3 (Statistic). (See also [HCM04, Definition 5.1.2, p 235]) A
statistic is a function of a random sample. In other words, a statistic is a
quantity that is calculated from data contained in a random sample.

Let X1, X2, . . . , Xn denote a random sample from a distribution of mean �
and variance �2. Then the expected value of the sample mean Xn is

E(Xn) = �.

We say that Xn is an unbiased estimator for the mean �.

Example 1.1.4 (Unbiased Estimation of the Variance). Let X1, X2, . . . , Xn be
a random sample from a distribution of mean � and variance �2. Consider

n∑
k=1

(Xk − �)2 =

n∑
k=1

[
X2
k − 2�Xk + �2

]

=

n∑
k=1

X2
k − 2�

n∑
k=1

Xk + n�2

=

n∑
k=1

X2
k − 2�nXn + n�2.

On the other hand,

n∑
k=1

(Xk −Xn)2 =

n∑
k=1

[
X2
k − 2XnXk +X

2

n

]

=

n∑
k=1

X2
k − 2Xn

n∑
k=1

Xk + nX
2

n

=

n∑
k=1

X2
k − 2nXnXn + nX

2

n

=

n∑
k=1

X2
k − nX

2

n.
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Consequently,

n∑
k=1

(Xk − �)2 −
n∑
k=1

(Xk −Xn)2 = nX
2

n − 2�nXn + n�2 = n(Xn − �)2.

It then follows that

n∑
k=1

(Xk −Xn)2 =

n∑
k=1

(Xk − �)2 − n(Xn − �)2.

Taking expectations on both sides, we get

E

(
n∑
k=1

(Xk −Xn)2

)
=

n∑
k=1

E
[
(Xk − �)2

]
− nE

[
(Xn − �)2

]

=

n∑
k=1

�2 − nvar(Xn)

= n�2 − n�
2

n

= (n− 1)�2.

Thus, dividing by n− 1,

E

(
1

n− 1

n∑
k=1

(Xk −Xn)2

)
= �2.

Hence, the random variable

S2
n =

1

n− 1

n∑
k=1

(Xk −Xn)2,

called the sample variance, is an unbiased estimator of the variance.

Given a random sample, X1, X2, . . . , Xn, from a distribution with mean �
and variance �2, and a statistic, T = T (X1, X2, . . . , Xn), based on the ran-
dom sample, it is of interest to find out what the distribution of the statistic,
T , is. This is called the sampling distribution of T . For example, we would
like to know what the sampling distribution of the sample mean, Xn, is. In
order to find out what the sampling distribution of a statistic is, we need to
know the joint distribution, F(X1,X2,...,Xn)(x1, x2, . . . , xn), of the sample vari-
able X1, X2, . . . , Xn is. Since, the variables X1, X2, . . . , Xn are independently
and identically distributed (iid), then we can compute

F(X1,X2,...,Xn)(x1, x2, . . . , xn) = FX(x1) ⋅ FX(x2) ⋅ ⋅ ⋅FX(xn),
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where FX is the common distribution. Recall that

FX(x) = P(X ⩽ x)

and

F(X1,X2,...,Xn)(x1, x2, . . . , xn) = P(X1 ⩽ x1, X2 ⩽ x2, . . . , Xn ⩽ xn).

If X is a continuous random variable with density fX(x), then the joint density
of the sample is

f(1,X2,...,Xn)(x1, x2, . . . , xn) = fX(x1) ⋅ fX(x2) ⋅ ⋅ ⋅ fX(xn).

Example 1.1.5. Let N1, N2, . . . , Nn denote a random sample from the exper-
iment consisting of scooping up a quarter-cup of kernels popcorn from bag and
counting the number of kernels. Assume that each Ni has a normal(�, �2) dis-
tribution. We would like to find the distribution of the sample mean Nn. We
can do this by first computing the moment generating function (mgf), MNn

(t),

of Nn:

MNn
(t) = E(etNn)

= E
(
e(N1+N2+⋅⋅⋅+Nn)( tn )

)
= MN1+N2+⋅⋅⋅+Nn

(
t

n

)

= MX1

(
t

n

)
MN2

(
t

n

)
⋅ ⋅ ⋅MNn

(
t

n

)
,

since the Nis are independent. Thus, since the Nis are also identically dis-
tributed,

MNn
(t) =

(
MN1

(
t

n

))n
,

where MN1

(
t

n

)
= e�t/n+�2t2/2n2

, since N1 has a normal(�, �2) distribution.

It then follows that

MNn
(t) = e�t+�

2t2/2n,

which is the mgf of a normal(�, �2/n) distribution. It then follows that Nn has
a normal distribution with mean

E(Nn) = �

and variance

var(Nn) =
�2

n
.
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Example 1.1.5 shows that the sample mean, Xn, for a random sample from
a normal(�, �2) distribution follows a normal(�, �2/n). A surprising, and ex-
tremely useful, result from the theory of probability, states that for large values
of n the sample mean for samples from any distribution are approximately

normal(�, �2/n). This is the essence of the Central Limit Theorem:

Theorem 1.1.6 (Central Limit Theorem). [HCM04, Theorem 4.4.1, p 220]
Suppose X1, X2, X3 . . . are independent, identically distributed random vari-
ables with E(Xi) = � and finite variance var(Xi) = �2, for all i. Then

lim
n→∞

P

(
Xn − �
�/
√
n
⩽ z

)
= P(Z ⩽ z),

for all z ∈ ℝ, where Z ∼ Normal(0, 1).

Thus, for large values of n, the distribution function for
Xn − �
�/
√
n

can be

approximated by the standard normal distribution. We write

Xn − �
�/
√
n

D−→ Z ∼ Normal(0, 1)

and say that
Xn − �
�/
√
n

converges in distribution to Z. In general, we have

Definition 1.1.7 (Convergence in Distribution). A sequence, (Yn), of random
variables is said to converge in distribution to a random variable Y if

lim
n→∞

FYn(y) = FY (y)

for all y where FY is continuous. We write

Yn
D−→ Y as n→∞.

In practice, the Central Limit Theorem is applied to approximate the prob-
abilities

P

(
Xn − �
�/
√
n
⩽ z

)
≈ P(Z ⩽ z) for larege n,

which we could write as

FXn ≈ F�+ �√
n
Z for larege n;

in other words, for large sample sizes, n, the distribution of the sample mean is
approximately normal(�, �2/n).



Chapter 2

Estimation

2.1 Estimating the Mean of a Distribution

We saw in the previous section that the sample mean, Xn, of a random sample,
X1, X2, . . . , Xn, from a distribution with mean � is an unbiased estimator for �;
that is, E(Xn) = �. In this section we will see that, as we increase the sample
size, n, then the sample means, Xn, approach � in probability; that is, for every
" > 0,

lim
n→∞

P(∣Xn − �∣ ⩾ ") = 0,

or
lim
n→∞

P(∣Xn − �∣ < ") = 1.

We then say that Xn converges to � in probability and write

Xn
P−→ � as n→∞.

Definition 2.1.1 (Convergence in Probability). A sequence, (Yn), of random
variables is said to converge in probability to b ∈ ℝ, if for every " > 0

lim
n→∞

P(∣Yn − b∣ < ") = 1.

We write

Yn
P−→ b as n→∞.

The fact that Xn converges to � in probability is known as the weak Law
of Large Numbers. We will prove this fact under the assumption that the
distribution being sampled has finite variance, �2. Then, the weak Law of Large
Numbers will follow from the inequality:

Theorem 2.1.2 (Chebyshev Inequality). Let X be a random variable with
mean � and variance var(X). Then, for every " > 0,

P(∣X − �∣ ⩾ ") ⩽ var(X)

"2
.

13



14 CHAPTER 2. ESTIMATION

Proof: We shall prove this inequality for the case in which X is continuous with
pdf f

X
.

Observe that var(X) = E[(X − �)2] =

∫ ∞
−∞
∣x− �∣2f

X
(x) dx. Thus,

var(X) ⩾
∫
A"

∣x− �∣2f
X

(x) dx,

where A" = {x ∈ ℝ ∣ ∣x− �∣ ⩾ "}. Consequently,

var(X) ⩾ "2

∫
A"

f
X

(x) dx = "2P(A").

we therefore get that

P(A") ⩽
var(X)

"2
,

or

P(∣X − �∣ ⩾ ") ⩽ var(X)

"2
.

Applying Chebyshev Inequality to the case in which X is the sample mean,
Xn, we get

P(∣Xn − �∣ ⩾ ") ⩽
var(Xn)

"2
=

�2

n"2
.

We therefore obtain that

P(∣Xn − �∣ < ") ⩾ 1− �2

n"2
.

Thus, letting n→∞, we get that, for every " > 0,

lim
n→∞

P(∣Xn − �∣ < ") = 1.

Later in these notes will we need the fact that a continuous function of a
sequence which converges in probability will also converge in probability:

Theorem 2.1.3 (Slutsky’s Theorem). Suppose that (Yn) converges in proba-
bility to b as n → ∞ and that g is a function which is continuous at b. Then,
(g(Yn)) converges in probability to g(b) as n→∞.

Proof: Let " > 0 be given. Since g is continuous at b, there exists � > 0 such
that

∣y − b∣ < � ⇒ ∣g(y)− g(b)∣ < ".

It then follows that the event A� = {y ∣ ∣y − b∣ < �} is a subset the event
B" = {y ∣ ∣g(y)− g(b)∣ < "}. Consequently,

P(A�) ⩽ P(B").
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It then follows that

P(∣Yn − b∣ < �) ⩽ P(∣g(Yn)− g(b)∣ < ") ⩽ 1. (2.1)

Now, since Yn
P−→ b as n→∞,

lim
n→∞

P(∣Yn − b∣ < �) = 1.

It then follows from Equation (2.1) and the Squeeze or Sandwich Theorem that

lim
n→∞

P(∣g(Yn)− g(b)∣ < ") = 1.

Since the sample mean, Xn, converges in probability to the mean, �, of
sampled distribution, by the weak Law of Large Numbers, we say that Xn is a
consistent estimator for �.

2.2 Interval Estimate for Proportions

Example 2.2.1 (Estimating Proportions). Let X1, X2, X3, . . . denote indepen-
dent identically distributed (iid) Bernoulli(p) random variables. Then the sam-
ple mean, Xn, is an unbiased and consistent estimator for p. Denoting Xn by
p̂n, we then have that

E(p̂n) = p for all n = 1, 2, 3, . . . ,

and

p̂n
P−→ p as n→∞;

that is, for every " > 0,

lim
n→∞

P(∣p̂n − p∣ < ") = 1.

By Slutsky’s Theorem (Theorem 2.1.3), we also have that√
p̂n(1− p̂n)

P−→
√
p(1− p) as n→∞.

Thus, the statistic
√
p̂n(1− p̂n) is a consistent estimator of the standard devi-

ation � =
√
p(1− p) of the Bernoulli(p) trials X1, X2, X3, . . .

Now, by the Central Limit Theorem, we have that

lim
n→∞

P

(
p̂n − p
�/
√
n
⩽ z

)
= P(Z ⩽ z),

where Z ∼ Normal(0, 1), for all z ∈ ℝ. Hence, since
√
p̂n(1− p̂n) is a consistent

estimator for �, we have that, for large values of n,

P

(
p̂n − p√

p̂n(1− p̂n)/
√
n
⩽ z

)
≈ P(Z ⩽ z),
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for all z ∈ ℝ. Similarly, for large values of n,

P

(
p̂n − p√

p̂n(1− p̂n)/
√
n
⩽ −z

)
≈ P(Z ⩽ −z).

subtracting this from the previous expression we get

P

(
−z < p̂n − p√

p̂n(1− p̂n)/
√
n
⩽ z

)
≈ P(−z < Z ⩽ z)

for large values of n, or

P

(
−z ⩽ p− p̂n√

p̂n(1− p̂n)/
√
n
< z

)
≈ P(−z < Z ⩽ z)

for large values of n.
Now, suppose that z > 0 is such that P(−z < Z ⩽ z) ⩾ 0.95. Then, for that

value of z, we get that, approximately, for large values of n,

P

(
p̂n − z

√
p̂n(1− p̂n)√

n
⩽ p < p̂n + z

√
p̂n(1− p̂n)√

n

)
⩾ 0.95

Thus, for large values of n, the intervals[
p̂n − z

√
p̂n(1− p̂n)√

n
, p̂n + z

√
p̂n(1− p̂n)√

n

)
have the property that the probability that the true proportion p lies in them
is at least 95%. For this reason, the interval[

p̂n − z
√
p̂n(1− p̂n)√

n
, p̂n + z

√
p̂n(1− p̂n)√

n

)
is called the 95% confidence interval estimate for the proportion p. To
find the value of z that yields the 95% confidence interval for p, observe that

P(−z < Z ⩽ z) = F
Z

(z)− F
Z

(−z) = F
Z

(z)− (1− F
Z

(z)) = 2F
Z

(z)− 1.

Thus, we need to solve for z in the inequality

2F
Z

(z)− 1 ⩾ 0.95

or
F
Z

(z) ⩾ 0.975.

This yields z = 1.96. We then get that the approximate 95% confidence
interval estimate for the proportion p is[

p̂n − 1.96

√
p̂n(1− p̂n)√

n
, p̂n + 1.96

√
p̂n(1− p̂n)√

n

)
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Example 2.2.2. In the corn–popping experiment described in Section 1.1.1, out
of 356 kernels, 52 fail to pop. In this example, we compute a 95% confidence
interval for p, the probability of failure to pop for a given kernel, based on
this information. An estimate for p in this case is p̂n = 52/356 ≈ 0.146. An
approximate 95% confidence interval estimate for the true proportion of kernels,
p, which will not pop is then[

0.146− 1.96

√
0.146(0.854)√

356
, 0.146 + 1.96

√
0.146(0.854)√

356

)
,

or about [0.146−0.037, 0.146+0.037), or [0.109, 0.183). Thus, the failure to pop
rate is between 10.9% and 18.3% with a 95% confidence level. The confidence
level here indicates the probability that the method used to produce the inter-
val estimate from the data will contain the true value of the parameter being
estimated.

2.3 Interval Estimates for the Mean

In the previous section we obtained an approximate confidence interval (CI)
estimate for the probability that a given kernel will fail to pop. We did this by
using the fact that, for large numbers of trials, a binomial distribution can be
approximated by a normal distribution (by the Central Limit Theorem). We also
used the fact that the sample standard deviation

√
p̂n(1− p̂n) is a consistent

estimator of the standard deviation � =
√
p(1− p) of the Bernoulli(p) trials

X1, X2, X3, . . . The consistency condition might not hold in general. However,
in the case in which sampling is done from a normal distribution an exact
confidence interval estimate may be obtained based on on the sample mean and
variance by means of the t–distribution. We present this development here and
apply it to the problem of estimating the mean number of popcorn kernels in
one quarter cup.

We have already seen that the sample mean, Xn, of a random sample of size
n from a normal(�, �2) follows a normal(�, �2/n) distribution. It then follows
that

P

(
∣Xn − �∣
�/
√
n

)
= P(∣Z∣ ⩽ z) for all z ∈ ℝ, (2.2)

where Z ∼ normal(0, 1). Thus, if we knew �, then we could obtain the 95% CI
for � by choosing z = 1.96 in (2.2). We would then obtain the CI:[

Xn − 1.96
�√
n
,Xn + 1.96

�√
n

]
.

However, � is generally and unknown parameter. So, we need to resort to
a different kind of estimate. The idea is to use the sample variance, S2

n, to
estimate �2, where

S2
n =

1

n− 1

n∑
k=1

(Xk −Xn)2. (2.3)
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Thus, instead of considering the normalized sample means

Xn − �
�/
√
n
,

we consider the random variables

Tn =
Xn − �
Sn/
√
n
. (2.4)

The task that remains then is to determine the sampling distribution of Tn.
This was done by William Sealy Gosset in 1908 in an article published in the
journal Biometrika under the pseudonym Student [Stu08]. The fact the we
can actually determine the distribution of Tn in (2.4) depends on the fact that
X1, X2, . . . , Xn is a random sample from a normal distribution and knowledge
of the �2 distribution.

2.3.1 The �2 Distribution

Example 2.3.1 (The Chi–Square Distribution with one degree of freedom).
Let Z ∼ Normal(0, 1) and define X = Z2. Give the probability density function
(pdf) of X.

Solution: The pdf of Z is given by

f
X

(z) =
1√
2�
e−z

2/2, for −∞ < z <∞.

We compute the pdf forX by first determining its cumulative density
function (cdf):

P (X ≤ x) = P (Z2 ≤ x) for y ⩾ 0

= P (−
√
x ≤ Z ≤

√
x)

= P (−
√
x < Z ≤

√
x), since Z is continuous.

Thus,

P (X ≤ x) = P (Z ≤
√
x)− P (Z ≤ −

√
x)

= F
Z

(
√
x)− F

Z
(−
√
x) for x > 0,

since X is continuous.

We then have that the cdf of X is

F
X

(x) = F
Z

(
√
x)− F

Z
(−
√
x) for x > 0,
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from which we get, after differentiation with respect to x,

f
X

(x) = F ′
Z

(
√
x) ⋅ 1

2
√
x

+ F ′
Z

(−
√
x) ⋅ 1

2
√
x

= f
Z

(
√
x)

1

2
√
x

+ f
Z

(−
√
x)

1

2
√
x

=
1

2
√
x

{
1√
2�

e−x/2 +
1√
2�

e−x/2
}

=
1√
2�
⋅ 1√

x
e−x/2

for x > 0. □

Definition 2.3.2. A continuous random variable, X having the pdf

f
X

(x) =

⎧⎨⎩
1√
2�
⋅ 1√

x
e−x/2 if x > 0

0 otherwise,

is said to have a Chi–Square distribution with one degree of freedom. We write

Y ∼ �2(1).

Remark 2.3.3. Observe that if X ∼ �2
1
, then its expected value is

E(X) = E(Z2) = 1,

since var(Z) = E(Z2)−(E(Z))2 and E(Z) = 0 and var(Z) = 1. To compute the
second moment of X, E(X2) = E(Z4), we need to compute the fourth moment
of Z. In order to do this, we first compute the mgf of Z is

M
Z

(t) = et
2/2 for all t ∈ ℝ.

Its fourth derivative can be computed to be

M (4)
Z

(t) = (3 + 6t2 + t4) et
2/2 for all t ∈ ℝ.

Thus,
E(Z4) = M (4)

Z
(0) = 3.

We then have that the variance of X is

var(X) = E(X2)− (E(X))2 = E(Z4)− 1 = 3− 1 = 2.

Suppose next that we have two independent random variable, X and Y ,
both of which have a �2(1) distribution. We would like to know the distribution
of the sum X + Y .
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Denote the sum X + Y by W . We would like to compute the pdf fW . Since
X and Y are independent, fW is given by the convolution of fX and fY ; namely,

f
W

(w) =

∫ +∞

−∞
f
X

(u)f
Y

(w − u)du,

where

f
X

(x) =

⎧⎨⎩
1√
2�

1√
x
e−x/2 x > 0,

0 elsewhere,

f
Y

(y) =

⎧⎨⎩
1√
2�

1
√
y
e−y/2 y > 0

0 otherwise.

We then have that

f
W

(w) =

∫ ∞
0

1√
2�
√
u
e−u/2f

Y
(w − u) du,

since f
X

(u) is zero for negative values of u. Similarly, since f
Y

(w − u) = 0 for
w − u < 0, we get that

f
W

(w) =

∫ w

0

1√
2�
√
u
e−u/2

1√
2�
√
w − u

e−(w−u)/2 du

=
e−w/2

2�

∫ w

0

1√
u
√
w − u

du.

Next, make the change of variables t =
u

w
. Then, du = wdt and

f
W

(w) =
e−w/2

2�

∫ 1

0

w√
wt
√
w − wt

dt

=
e−w/2

2�

∫ 1

0

1√
t
√

1− t
dt.

Making a second change of variables s =
√
t, we get that t = s2 and dt = 2sds,

so that

f
W

(w) =
e−w/2

�

∫ 1

0

1√
1− s2

ds

=
e−w/2

�
[arcsin(s)]

1
0

=
1

2
e−w/2 for w > 0,

and zero otherwise. It then follows that W = X + Y has the pdf of an
exponential(2) random variable.
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Definition 2.3.4 (�2 distribution with n degrees of freedom). LetX1, X2, . . . , Xn

be independent, identically distributed random variables with a �2(1) distribu-
tion. Then then random variable X1 + X2 + ⋅ ⋅ ⋅ + Xn is said to have a �2

distribution with n degrees of freedom. We write

X1 +X2 + ⋅ ⋅ ⋅+Xn ∼ �2(n).

The calculations preceding Definition 2.3.4 if a random variable, W , has a
�2(2) distribution, then its pdf is given by

f
W

(w) =

⎧⎨⎩
1

2
e−w/2 for w > 0;

0 for w ⩽ 0;

Our goal in the following set of examples is to come up with the formula for the
pdf of a �2(n) random variable.

Example 2.3.5 (Three degrees of freedom). Let X ∼ exponential(2) and Y ∼
�2(1) be independent random variables and define W = X + Y . Give the
distribution of W .

Solution: Since X and Y are independent, by Problem 1 in Assign-
ment #3, f

W
is the convolution of f

X
and f

Y
:

f
W

(w) = f
X
∗ f

Y
(w)

=

∫ ∞
−∞

f
X

(u)f
Y

(w − u)du,

where

f
X

(x) =

⎧⎨⎩
1

2
e−x/2 if x > 0;

0 otherwise;

and

f
Y

(y) =

⎧⎨⎩
1√
2�

1
√
y
e−y/2 if y > 0;

0 otherwise.

It then follows that, for w > 0,

f
W

(w) =

∫ ∞
0

1

2
e−u/2f

Y
(w − u)du

=

∫ w

0

1

2
e−u/2

1√
2�

1√
w − u

e−(w−u)/2du

=
e−w/2

2
√

2�

∫ w

0

1√
w − u

du.
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Making the change of variables t = u/w, we get that u = wt and
du = wdt, so that

f
W

(w) =
e−w/2

2
√

2�

∫ 1

0

1√
w − wt

wdt

=

√
w e−w/2

2
√

2�

∫ 1

0

1√
1− t

dt

=

√
w e−w/2√

2�

[
−
√

1− t
]1
0

=
1√
2�

√
w e−w/2,

for w > 0. It then follows that

f
W

(w) =

⎧⎨⎩
1√
2�

√
w e−w/2 if w > 0;

0 otherwise.

This is the pdf for a �2(3) random variable. □

Example 2.3.6 (Four degrees of freedom). Let X,Y ∼ exponential(2) be in-
dependent random variables and define W = X + Y . Give the distribution of
W .

Solution: Since X and Y are independent, f
W

is the convolution
of f

X
and f

Y
:

f
W

(w) = f
X
∗ f

Y
(w)

=

∫ ∞
−∞

f
X

(u)f
Y

(w − u)du,

where

f
X

(x) =

⎧⎨⎩
1

2
e−x/2 if x > 0;

0 otherwise;

and

f
Y

(y) =

⎧⎨⎩
1

2
e−y/2 if y > 0;

0 otherwise.
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It then follows that, for w > 0,

f
W

(w) =

∫ ∞
0

1

2
e−u/2f

Y
(w − u)du

=

∫ w

0

1

2
e−u/2

1

2
e−(w−u)/2du

=
e−w/2

4

∫ w

0

du

=
w e−w/2

4
,

for w > 0. It then follows that

f
W

(w) =

⎧⎨⎩
1

4
w e−w/2 if w > 0;

0 otherwise.

This is the pdf for a �2(4) random variable. □

We are now ready to derive the general formula for the pdf of a �2(n) random
variable.

Example 2.3.7 (n degrees of freedom). In this example we prove that if W ∼
�2(n), then the pdf of W is given by

f
W

(w) =

⎧⎨⎩
1

Γ(n/2) 2n/2
w
n
2−1 e−w/2 if w > 0;

0 otherwise,

(2.5)

where Γ denotes the Gamma function defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt for all real values of z except 0,−1,−2,−3, . . .

Proof: We proceed by induction of n. Observe that when n = 1 the formula in
(2.5) yields, for w > 0,

f
W

(w) =
1

Γ(1/2) 21/2
w

1
2−1 e−w/2 =

1√
2�

1√
x
e−w/2,

which is the pdf for a �(1) random variable. Thus, the formula in (2.5) holds
true for n = 1.
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Next, assume that a �2(n) random variable has pdf given (2.5). We will
show that if W ∼ �2(n+ 1), then its pdf is given by

f
W

(w) =

⎧⎨⎩
1

Γ((n+ 1)/2) 2(n+1)/2
w
n−1
2 e−w/2 if w > 0;

0 otherwise.

(2.6)

By the definition of a �2(n + 1) random variable, we have that W = X + Y
where X ∼ �2(n) and Y ∼ �2(1) are independent random variables. It then
follows that

f
W

= f
X
∗ f

Y

where

f
X

(x) =

⎧⎨⎩
1

Γ(n/2) 2n/2
x
n
2−1 e−x/2 if x > 0;

0 otherwise.

and

f
Y

(y) =

⎧⎨⎩
1√
2�

1
√
y
e−y/2 if y > 0;

0 otherwise.

Consequently, for w > 0,

f
W

(w) =

∫ w

0

1

Γ(n/2) 2n/2
u
n
2−1 e−u/2

1√
2�

1√
w − u

e−(w−u)/2du

=
e−w/2

Γ(n/2)
√
� 2(n+1)/2

∫ w

0

u
n
2−1

√
w − u

du.

Next, make the change of variables t = u/w; we then have that u = wt, du = wdt
and

f
W

(w) =
w
n−1
2 e−w/2

Γ(n/2)
√
� 2(n+1)/2

∫ 1

0

t
n
2−1

√
1− t

dt.

Making a further change of variables t = z2, so that dt = 2zdz, we obtain that

f
W

(w) =
2w

n−1
2 e−w/2

Γ(n/2)
√
� 2(n+1)/2

∫ 1

0

zn−1

√
1− z2

dz. (2.7)

It remains to evaluate the integrals∫ 1

0

zn−1

√
1− z2

dz for n = 1, 2, 3, . . .
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We can evaluate these by making the trigonometric substitution z = sin � so
that dz = cos �d� and∫ 1

0

zn−1

√
1− z2

dz =

∫ �/2

0

sinn−1 �d�.

Looking up the last integral in a table of integrals we find that, if n is even and
n ⩾ 4, then ∫ �/2

0

sinn−1 �d� =
1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (n− 2)

2 ⋅ 4 ⋅ 6 ⋅ ⋅ ⋅ (n− 1)
,

which can be written in terms of the Gamma function as∫ �/2

0

sinn−1 �d� =
2n−2

[
Γ
(
n
2

)]2
Γ(n)

. (2.8)

Note that this formula also works for n = 2.
Similarly, we obtain that for odd n with n ⩾ 1 that∫ �/2

0

sinn−1 �d� =
Γ(n)

2n−1
[
Γ
(
n+1

2

)]2 �

2
. (2.9)

Now, if n is odd and n ⩾ 1 we may substitute (2.9) into (2.7) to get

f
W

(w) =
2w

n−1
2 e−w/2

Γ(n/2)
√
� 2(n+1)/2

Γ(n)

2n−1
[
Γ
(
n+1

2

)]2 �

2

=
w
n−1
2 e−w/2

Γ(n/2) 2(n+1)/2

Γ(n)
√
�

2n−1
[
Γ
(
n+1

2

)]2 .
Now, by Problem 5 in Assignment 1, for odd n,

Γ
(n

2

)
=

Γ(n)
√
�

2n−1 Γ
(
n+1

2

) .
It the follows that

f
W

(w) =
w
n−1
2 e−w/2

Γ
(
n+1

2

)
2(n+1)/2

for w > 0, which is (2.6) for odd n.
Next, suppose that n is a positive, even integer. In this case we substitute

(2.8) into (2.7) and get

f
W

(w) =
2w

n−1
2 e−w/2

Γ(n/2)
√
� 2(n+1)/2

2n−2
[
Γ
(
n
2

)]2
Γ(n)

or

f
W

(w) =
w
n−1
2 e−w/2

2(n+1)/2

2n−1Γ
(
n
2

)
√
� Γ(n)

(2.10)
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Now, since n is even, n + 1 is odd, so that by by Problem 5 in Assignment 1
again, we get that

Γ

(
n+ 1

2

)
=

Γ(n+ 1)
√
�

2n Γ
(
n+2

2

) =
nΓ(n)

√
�

2n n
2 Γ
(
n
2

) ,
from which we get that

2n−1Γ
(
n
2

)
√
� Γ(n)

=
1

Γ
(
n+1

2

) .
Substituting this into (2.10) yields

f
W

(w) =
w
n−1
2 e−w/2

Γ
(
n+1

2

)
2(n+1)/2

for w > 0, which is (2.6) for even n. This completes inductive step and the
proof is now complete. That is, if W ∼ �2(n) then the pdf of W is given by

f
W

(w) =

⎧⎨⎩
1

Γ(n/2) 2n/2
w
n
2−1 e−w/2 if w > 0;

0 otherwise,

for n = 1, 2, 3, . . .

2.3.2 The t Distribution

In this section we derive a very important distribution in statistics, the Student
t distribution, or t distribution for short. We will see that this distribution will
come in handy when we complete our discussion of estimating the mean based
on a random sample from a normal(�, �2) distribution.

Example 2.3.8 (The t distribution). Let Z ∼ normal(0, 1) and X ∼ �2(n− 1)
be independent random variables. Define

T =
Z√

X/(n− 1)
.

Give the pdf of the random variable T .

Solution: We first compute the cdf, F
T

, of T ; namely,

F
T

(t) = P (T ⩽ t)

= P

(
Z√

X/(n− 1)
⩽ t

)

=

∫∫
R

f
(X,Z)

(x, z)dxdz,
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where Rt is the region in the xz–plane given by

Rt = {(x, z) ∈ ℝ2 ∣ z < t
√
x/(n− 1), x > 0},

and the joint distribution, f
(X,Z)

, of X and Z is given by

f
(X,Z)

(x, z) = f
X

(x) ⋅ f
Z

(z) for x > 0 and z ∈ ℝ,

because X and Z are assumed to be independent. Furthermore,

f
X

(x) =

⎧⎨⎩
1

Γ
(
n−1

2

)
2(n−1)/2

x
n−1
2 −1 e−x/2 if x > 0;

0 otherwise,

and

f
Z

(z) =
1√
2�

e−z
2/2, for −∞ < z <∞.

We then have that

F
T

(t) =

∫ ∞
0

∫ t
√
x/(n−1)

−∞

x
n−3
2 e−(x+z2)/2

Γ
(
n−1

2

)√
� 2

n
2

dzdx.

Next, make the change of variables

u = x

v =
z√

x/(n− 1)
,

so that
x = u

z = v
√
u/(n− 1).

Consequently,

F
T

(t) =
1

Γ
(
n−1

2

)√
� 2

n
2

∫ t

−∞

∫ ∞
0

u
n−3
2 e−(u+uv2/(n−1))/2

∣∣∣∣∂(x, z)

∂(u, v)

∣∣∣∣dudv,

where the Jacobian of the change of variables is

∂(x, z)

∂(u, v)
= det

⎛⎝ 1 0

v/2
√
u
√
n− 1 u1/2/

√
n− 1

⎞⎠
=

u1/2

√
n− 1

.
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It then follows that

F
T

(t) =
1

Γ
(
n−1

2

)√
(n− 1)� 2

n
2

∫ t

−∞

∫ ∞
0

u
n
2−1 e−(u+uv2/(n−1))/2dudv.

Next, differentiate with respect to t and apply the Fundamental
Theorem of Calculus to get

f
T

(t) =
1

Γ
(
n−1

2

)√
(n− 1)� 2

n
2

∫ ∞
0

u
n
2−1 e−(u+ut2/(n−1))/2du

=
1

Γ
(
n−1

2

)√
(n− 1)� 2

n
2

∫ ∞
0

u
n
2−1 e

−
(

1+ t2

n−1

)
u/2

du.

Put � =
n

2
and � =

2

1 + t2

n−1

. Then,

f
T

(t) =
1

Γ
(
n−1

2

)√
(n− 1)� 2�

∫ ∞
0

u�−1 e−u/�du

=
Γ(�)��

Γ
(
n−1

2

)√
(n− 1)� 2�

∫ ∞
0

u�−1 e−u/�

Γ(�)��
du,

where

f
U

(u) =

⎧⎨⎩
u�−1 e−u/�

Γ(�)��
if u > 0

0 if u ⩽ 0

is the pdf of a Γ(�, �) random variable (see Problem 5 in Assignment
#3). We then have that

f
T

(t) =
Γ(�)��

Γ
(
n−1

2

)√
(n− 1)� 2�

for t ∈ ℝ.

Using the definitions of � and � we obtain that

f
T

(t) =
Γ
(
n
2

)
Γ
(
n−1

2

)√
(n− 1)�

⋅ 1(
1 +

t2

n− 1

)n/2 for t ∈ ℝ.

This is the pdf of a random variable with a t distribution with n− 1
degrees of freedom. In general, a random variable, T , is said to have
a t distribution with r degrees of freedom, for r ⩾ 1, if its pdf is
given by

f
T

(t) =
Γ
(
r+1

2

)
Γ
(
r
2

)√
r�
⋅ 1(

1 +
t2

r

)(r+1)/2
for t ∈ ℝ.
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We write T ∼ t(r). Thus, in this example we have seen that, if
Z ∼ norma(0, 1) and X ∼ �2(n− 1), then

Z√
X/(n− 1)

∼ t(n− 1).

□

We will see the relevance of this example in the next section when we continue
our discussion estimating the mean of a norma distribution.

2.3.3 Sampling from a normal distribution

Let X1, X2, . . . , Xn be a random sample from a normal(�, �2) distribution.
Then, the sample mean, Xn has a normal(�, �2/n) distribution.

Observe that

∣Xn − �∣ < b⇔
∣∣∣∣Xn − �
�/
√
n

∣∣∣∣ < √n b� ,

where
Xn − �
�/
√
n
∼ normal(0, 1).

Thus,

P(∣Xn − �∣ < b) = P

(
∣Z∣ <

√
n b

�

)
, (2.11)

where Z ∼ normal(0, 1). Observer that the distribution of the standard normal
random variable Z is independent of the parameters � and �. Thus, for given
values of z > 0 we can compute P (∣Z∣ < z). For example, if there is a way of
knowing the cdf for Z, either by looking up values in probability tables or suing
statistical software packages to compute then, we have that

P(∣Z∣ < z) = P(−z < Z < z)

= P(−z < Z ⩽ z)

= P(Z ⩽ z)− P(Z ⩽ −z)

= F
Z

(z)− F
Z

(−z),

where F
Z

(−z) = 1− F
Z

(z), by the symmetry if the pdf of Z. Consequently,

P(∣Z∣ < z) = 2F
Z

(z)− 1 for z > 0.

Suppose that 0 < � < 1 and let z
�/2

be the value of z for which P(∣Z∣ < z) =
1− �. We then have that z

�/2
satisfies the equation

F
Z

(z) = 1− �

2
.
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Thus,

z
�/2

= F−1
Z

(
1− �

2

)
, (2.12)

where F−1
Z

denotes the inverse of the cdf of Z. Then, setting

√
n b

�
= z

�/2
,

we see from (2.11) that

P

(
∣Xn − �∣ < z

�/2

�√
n

)
= 1− �,

which we can write as

P

(
∣�−Xn∣ < z

�/2

�√
n

)
= 1− �,

or

P

(
Xn − z�/2

�√
n
< � < Xn + z

�/2

�√
n

)
= 1− �, (2.13)

which says that the probability that the interval(
Xn − z�/2

�√
n
,Xn + z

�/2

�√
n

)
(2.14)

captures the parameter � is 1−�. The interval in (2.14) is called the 100(1−�)%
confidence interval for the mean, �, based on the sample mean. Notice that
this interval assumes that the variance, �2, is known, which is not the case in
general. So, in practice it is not very useful (we will see later how to remedy this
situation); however, it is a good example to illustrate the concept of a confidence
interval.

For a more concrete example, let � = 0.05. Then, to find z
�/2

we may use
the NORMINV function in MS Excel, which gives the inverse of the cumulative
distribution function of normal random variable. The format for this function
is

NORMINV(probability,mean,standard_dev)

In this case the probability is 1 − �

2
= 0.975, the mean is 0, and the standard

deviation is 1. Thus, according to (2.12), z
�/2

is given by

NORMINV(0.975, 0, 1) ≈ 1.959963985

or about 1.96.
In R, the inverse cdf for a normal random variable is the qnorm function

whose format is
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qnorm(probability, mean, standard_deviation).

Thus, in R, for � = 0.05,

z
�/2
≈ qnorm(0.975, 0, 1) ≈ 1.959964 ≈ 1.96.

Hence the 95% confidence interval for the mean, �, of a normal(�, �2) distribu-
tion based on the sample mean, Xn is(

Xn − 1.96
�√
n
,Xn + 1.96

�√
n

)
, (2.15)

provided that the variance, �2, of the distribution is known. Unfortunately, in
most situations, �2 is an unknown parameter, so the formula for the confidence
interval in (2.14) is not useful at all. In order to remedy this situation, in 1908,
William Sealy Gosset, writing under the pseudonym of A. Student (see [Stu08]),
proposed looking tat the statistic

Tn =
Xn − �
Sn/
√
n
,

where S2
n is the sample variance defined by

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2.

Thus, we are replacing � in

Tn =
Xn − �
�/
√
n

by the sample standard deviation, Sn, so that we only have one unknown pa-
rameter, �, in the definition of Tn.

In order to find the sampling distribution of Tn, we will first need to deter-
mine the distribution of S2

n, given that sampling is done form a normal(�, �2)
distribution. We will find the distribution of S2

n by first finding the distribution
of the statistic

Wn =
1

�2

n∑
i=1

(Xi −Xn)2. (2.16)

Starting with

(Xi − �)2 = [(Xi −Xn) + (Xn − �)]2,

we can derive the identity

n∑
i=1

(Xi − �)2 =

n∑
i=1

(Xi −Xn)2 + n(Xn − �)2, (2.17)
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where we have used the fact that

n∑
i=1

(Xi −Xn) = 0. (2.18)

Next, dividing the equation in (2.17) by �2 and rearranging we obtain that

n∑
i=1

(
Xi − �
�

)2

= Wn +

(
Xn − �
�/
√
n

)2

, (2.19)

where we have used the definition of the random variable Wn in (2.16). Observe
that the random variable

n∑
i=1

(
Xi − �
�

)2

has a �2(n) distribution since the Xis are iid normal(�, �2) so that

Xi − �
�

∼ normal(0, 1),

and, consequently, (
Xi − �
�

)2

∼ �2(1).

Similarly, (
Xn − �
�/
√
n

)2

∼ �2(1),

since Xn ∼ normal(�, �2/n). We can then re–write (2.19) as

Y = Wn +X, (2.20)

where Y ∼ �2(n) and X ∼ �2(1). If we can prove that Wn and X are indepen-
dent random variables, we will then be able to conclude that

Wn ∼ �2(n− 1). (2.21)

To see why the assertion in (2.21) is true, if Wn and X are independent, note
that from (2.20) we get that the mgf of Y is

M
Y

(t) = M
Wn

(t) ⋅M
X

(t),
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by independence of Wn and X. Consequently,

M
Wn

(t) =
M

Y
(t)

M
X

(t)

=

(
1

1− 2t

)n/2
(

1

1− 2t

)1/2

=

(
1

1− 2t

)(n−1)/2

,

which is the mgf for a �2(n − 1) random variable. Thus, in order to prove

(2.21), it remains to prove that Wn and

(
Xn − �
�/
√
n

)2

are independent random

variables.

2.3.4 Distribution of the Sample Variance from a Normal
Distribution

In this section we will establish (2.21), which we now write as

(n− 1)

�2
S2
n ∼ �2(n− 1). (2.22)

As pointed out in the previous section, (2.22)will follow from (2.20) if we can
prove that

1

�2

n∑
i=1

(Xi −Xn)2 and

(
Xn − �
�/
√
n

)2

are independent. (2.23)

In turn, the claim in (2.23) will follow from the claim

n∑
i=1

(Xi −Xn)2 and Xn are independent. (2.24)

The justification for the last assertion is given in the following two examples.

Example 2.3.9. Suppose that X and Y are independent independent random
variables. Show that X and Y 2 are also independent.

Solution: Compute, for x ∈ ℝ and u ⩾ 0,

P(X ⩽ x, Y 2 ⩽ u) = P(X ⩽ x, ∣Y ∣ ⩽
√
u)

= P(X ⩽ x,−
√
u ⩽ Y ⩽

√
u)

= P(X ⩽ x) ⋅ P(−
√
u ⩽ Y ⩽

√
u),
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since X and Y are assumed to be independent. Consequently,

P(X ⩽ x, Y 2 ⩽ u) = P(X ⩽ x) ⋅ P(Y 2 ⩽ u),

which shows that X and Y 2 are independent. □

Example 2.3.10. Let a and b be real numbers with a ∕= 0. Suppose that X
and Y are independent independent random variables. Show that X and aY +b
are also independent.

Solution: Compute, for x ∈ ℝ and w ∈ ℝ,

P(X ⩽ x, aY + b ⩽ w) = P(X ⩽ x, Y ⩽ w−b
a )

= P(X ⩽ x) ⋅ P
(
Y ⩽

w − b
a

)
,

since X and Y are assumed to be independent. Consequently,

P(X ⩽ x, aY + b ⩽ w) = P(X ⩽ x) ⋅ P(aY + b ⩽ w),

which shows that X and aY + b are independent. □

Hence, in order to prove (2.22) it suffices to show that the claim in (2.24) is
true. To prove this last claim, observe that from (2.18) we get

(X1 −Xn) = −
n∑
i=2

(Xi −Xn,

so that, squaring on both sides,

(X1 −Xn)2 =

(
n∑
i=2

(Xi −Xn

)2

.

Hence, the random variable

n∑
i=1

(Xi −Xn)2 =

(
n∑
i=2

(Xi −Xn

)2

+

n∑
i=2

(Xi −Xn)2

is a function of the random vector

(X2 −Xn, X3 −Xn, . . . , Xn −Xn).

Consequently, the claim in (2.24) will be proved if we can prove that

Xn and (X2 −Xn, X3 −Xn, . . . , Xn −Xn) are independent. (2.25)

The proof of the claim in (2.25) relies on the assumption that the random
variables X1, X2, . . . , Xn are iid normal random variables. We illustrate this
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in the following example for the spacial case in which n = 2 and X1, X2 ∼
normal(0, 1). Observe that, in view of Example 2.3.10, by considering

Xi − �
�

for i = 1, 2, . . . , n,

we may assume from the outset that X1, X2, . . . , Xn are iid normal(0, 1) random
variables.

Example 2.3.11. Let X1 and X2 denote independent normal(0, 1) random
variables. Define

U =
X1 +X2

2
and V =

X2 −X1

2
.

Show that U and V independent random variables.

Solution: Compute the cdf of U and V :

F
(U,V )

(u, v) = P(U ⩽ u, V ⩽ v)

= P

(
X1 +X2

2
⩽ u,

X2 −X1

2
⩽ v

)
= P (X1 +X2 ⩽ 2u,X2 −X1 ⩽ 2v)

=

∫∫
Ru,v

f
(X1,X2)

(x1, x2)dx1dx2,

where Ru,v is the region in ℝ2 defined by

Ru,v = {(x1, x2) ∈ ℝ2 ∣ x1 + x2 ⩽ 2u, x2 − x1 ⩽ 2v},

and f
(X1,X2)

is the joint pdf of X1 and X2:

f
(X1,X2)

(x1, x2) =
1

2�
e−(x2

1+x2
2)/2 for all (x1, x2) ∈ ℝ2,

where we have used the assumption that X1 and X2 are independent
normal(0, 1) random variables.

Next, make the change of variables

r = x1 + x2 and w = x2 − x1,

so that

x1 =
r − w

2
and x2 =

r + w

2
,

and therefore

x2
1 + x2

2 =
1

2
(r2 + w2).
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Thus, by the change of variables formula,

F
(U,V )

(u, v) =

∫ 2u

−∞

∫ 2v

−∞

1

2�
e−(r2+w2)/4

∣∣∣∣∂(x1, x2)

∂(r, w)

∣∣∣∣ dwdr,

where

∂(x1, x2)

∂(r, w)
= det

⎛⎝ 1/2 −1/2

1/2 1/2

⎞⎠ =
1

2
.

Thus,

F
(U,V )

(u, v) =
1

4�

∫ 2u

−∞

∫ 2v

−∞
e−r

2/4 ⋅ e−w
2/4 dwdr,

which we can write as

F
(U,V )

(u, v) =
1

2
√
�

∫ 2u

−∞
e−r

2/4 dr ⋅ 1

2
√
�

∫ 2v

−∞
e−w

2/4 dw.

Taking partial derivatives with respect to u and v yields

f
(U,V )

(u, v) =
1√
�
e−u

2

⋅ 1√
�
e−v

2

,

where we have used the fundamental theorem of calculus and the
chain rule. Thus, the joint pdf of U and V is the product of the two
marginal pdfs

f
U

(u) =
1√
�
e−u

2

for −∞ < u <∞,

and

f
V

(v) =
1√
�
e−v

2

for −∞ < v <∞.

Hence, U and V are independent random variables. □

To prove in general that if X1, X2, . . . , Xn is a random sample from a
normal(0, 1) distribution, then

Xn and (X2 −Xn, X3 −Xn, . . . , Xn −Xn) are independent,

we may proceed as follows. Denote the random vector

(X2 −Xn, X3 −Xn, . . . , Xn −Xn)

by Y , and compute the cdf of Xn and Y :

F
(Xn,Y )

(u, v2, v3 , . . . , vn)

= P(Xn ⩽ u,X2 −Xn ⩽ v2, X3 −Xn ⩽ v3, . . . , Xn −Xn ⩽ vn)

=

∫∫
⋅ ⋅ ⋅
∫
Ru,v2,v3,...,vn

f
(X1,X2,...,Xn)

(x1, x2, . . . , xn) dx1dx2 ⋅ ⋅ ⋅ dxn,
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where

Ru,v2,...,vn = {(x1, x2, . . . , xn) ∈ ℝn ∣ x ⩽ u, x2 − x ⩽ v2, . . . , xn − x ⩽ vn},

for x =
x1 + x2 + ⋅ ⋅ ⋅+ xn

n
, and the joint pdf of X1, X2, . . . , Xn is

f
(X1,X2,...,Xn)

(x1, x2, . . . xn) =
1

(2�)n/2
e−(

∑n
i=1 x

2
i )/2 for all (x1, x2, . . . , xn) ∈ ℝn,

since X1, X2, . . . , Xn are iid normal(0, 1).
Next, make the change of variables

y1 = x
y2 = x2 − x
y3 = x3 − x

...
yn = xn − x.

so that

x1 = y1 −
n∑
i=2

yi

x2 = y1 + y2

x3 = y1 + y3

...

xn = y1 + yn,

and therefore

n∑
i=1

x2
i =

(
y1 −

n∑
i=2

yi

)2

+

n∑
i=2

(y1 + yi)
2

= ny2
1 +

(
n∑
i=2

yi

)2

+

n∑
i=2

y2
i

= ny2
1 + C(y2, y3, . . . , yn),

where we have set

C(y2, y3, . . . , yn) =

(
n∑
i=2

yi

)2

+

n∑
i=2

y2
i .
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Thus, by the change of variables formula,

F
(Xn,Y )

( u, v2, . . . , vn)

=

∫ u

−∞

∫ v1

−∞
⋅ ⋅ ⋅
∫ vn

−∞

e−(ny21+C(y2,...,yn)/2

(2�)n/2

∣∣∣∣∂(x1, x2, . . . , xn)

∂(y1, y2, . . . , yn)

∣∣∣∣ dyn ⋅ ⋅ ⋅ dy1,

where

∂(x1, x2, . . . , xn)

∂(y1, y2, . . . yn)
= det

⎛⎜⎜⎜⎜⎜⎝
1 −1 −1 ⋅ ⋅ ⋅ −1
1 1 0 ⋅ ⋅ ⋅ 0
1 0 1 ⋅ ⋅ ⋅ 0
...

...
...

...
1 0 0 ⋅ ⋅ ⋅ 1

⎞⎟⎟⎟⎟⎟⎠ .

In order to compute this determinant observe that

ny1 = x1 + x2 + x3 + . . . xn
ny2 = −x1 + (n− 1)x2 − x3 − . . .− xn
ny3 = −x1 − x2 + (n− 1)x3 − . . .− xn

...
nyn = −x1 − x2 − x3 − . . .+ (n− 1)xn

,

which can be written in matrix form as

n

⎛⎜⎜⎜⎜⎜⎝
y1

y2

y3

...
yn

⎞⎟⎟⎟⎟⎟⎠ = A

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

...
xn

⎞⎟⎟⎟⎟⎟⎠ ,

where A is the n× n matrix

A =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 ⋅ ⋅ ⋅ 1
−1 (n− 1) −1 ⋅ ⋅ ⋅ −1
−1 −1 (n− 1) ⋅ ⋅ ⋅ −1

...
...

...
...

−1 −1 −1 ⋅ ⋅ ⋅ (n− 1)

⎞⎟⎟⎟⎟⎟⎠ ,

whose determinant is

detA = det

⎛⎜⎜⎜⎜⎜⎝
1 1 1 ⋅ ⋅ ⋅ 1
0 n 0 ⋅ ⋅ ⋅ 0
0 0 n ⋅ ⋅ ⋅ 0
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ n

⎞⎟⎟⎟⎟⎟⎠ = nn−1.
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Thus, since

A

⎛⎜⎜⎜⎜⎜⎝
x1

x2

x3

...
xn

⎞⎟⎟⎟⎟⎟⎠ = nA−1

⎛⎜⎜⎜⎜⎜⎝
y1

y2

y3

...
yn

⎞⎟⎟⎟⎟⎟⎠ ,

it follows that

∂(x1, x2, . . . , xn)

∂(y1, y2, . . . yn)
= det(nA−1) = nn ⋅ 1

nn−1
= n.

Consequently,

F
(Xn,Y )

( u, v2, . . . , vn)

=

∫ u

−∞

∫ v1

−∞
⋅ ⋅ ⋅
∫ vn

−∞

n e−ny
2
1/2 e−C(y2,...,yn)/2

(2�)n/2
dyn ⋅ ⋅ ⋅ dy1,

which can be written as

F
(Xn,Y )

( u, v2, . . . , vn)

=

∫ u

−∞

n e−ny
2
1/2

√
2�

dy1 ⋅
∫ v1

−∞
⋅ ⋅ ⋅
∫ vn

−∞

e−C(y2,...,yn)/2

(2�)(n−1)/2
dyn ⋅ ⋅ ⋅ dy2.

Observe that ∫ u

−∞

n e−ny
2
1/2

√
2�

dy1

is the cdf of a normal(0, 1/n) random variable, which is the distribution of Xn.
Therefore

F
(Xn,Y )

(u, v2, . . . , vn) = F
Xn

(u) ⋅
∫ v1

−∞
⋅ ⋅ ⋅
∫ vn

−∞

e−C(y2,...,yn)/2

(2�)(n−1)/2
dyn ⋅ ⋅ ⋅ dy2,

which shows that Xn and the random vector

Y = (X2 −Xn, X3 −Xn, . . . , Xn −Xn)

are independent. Hence we have established (2.22); that is,

(n− 1)

�2
S2
n ∼ �2(n− 1).

2.3.5 The Distribution of Tn

We are now in a position to determine the sampling distribution of the statistic

Tn =
Xn − �
Sn/
√
n
, (2.26)
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where Xn and S2
n are the sample mean and variance, respectively, based on a

random sample of size n taken from a normal(�, �2) distribution.
We begin by re–writing the expression for Tn in (2.26) as

Tn =

Xn − �
�/
√
n

Sn
�

, (2.27)

and observing that

Zn =
Xn − �
�/
√
n
∼ normal(0, 1).

Furthermore,

Sn
�

=

√
S2
n

�2
=

√
Vn
n− 1

,

where

Vn =
n− 1

�2
S2
n,

which has a �2(n − 1) distribution, according to (2.22). It then follows from
(2.27) that

Tn =
Zn√
Vn
n− 1

,

where Zn is a standard normal random variable, and Vn has a �2 distribution
with n− 1 degrees of freedom. Furthermore, by (2.23), Zn and Vn are indepen-
dent. Consequently, using the result in Example 2.3.8, the statistic Tn defined
in (2.26) has a t distribution with n− 1 degrees of freedom; that is,

Xn − �
Sn/
√
n
∼ t(n− 1). (2.28)

Notice that the distribution on the right–hand side of (2.28) is independent
of the parameters � and �2; we can can therefore obtain a confidence interval
for the mean of of a normal(�, �2) distribution based on the sample mean and
variance calculated from a random sample of size n by determining a value t�/2
such that

P(∣Tn∣ < t�/2) = 1− �.
We then have that

P

(
∣Xn − �∣
Sn/
√
n

< t�/2

)
= 1− �,

or

P

(
∣�−Xn∣ < t�/2

Sn√
n

)
= 1− �,

or

P

(
Xn − t�/2

Sn√
n
< � < Xn + t�/2

Sn√
n

)
= 1− �.



2.3. INTERVAL ESTIMATES FOR THE MEAN 41

We have therefore obtained a 100(1−�)% confidence interval for the mean of a
normal(�, �2) distribution based on the sample mean and variance of a random
sample of size n from that distribution; namely,(

Xn − t�/2
Sn√
n
,Xn + t�/2

Sn√
n

)
. (2.29)

To find the value for z�/2 in (2.29) we use the fact that the pdf for the t
distribution is symmetric about the vertical line at 0 (or even) to obtain that

P(∣Tn∣ < t) = P(−t < Tn < t)

= P(−t < Tn ⩽ t)

= P(Tn ⩽ t)− P(Tn ⩽ −t)

= F
Tn

(t)− F
Tn

(−t),

where we have used the fact that Tn is a continuous random variable. Now, by
the symmetry if the pdf of Tn FTn (−t) = 1− F

Tn
(t). Thus,

P(∣Tn∣ < t) = 2F
Tn

(t)− 1 for t > 0.

So, to find t�/2 we need to solve

F
Tn

(t) = 1− �

2
.

We therefore get that

t
�/2

= F−1
Tn

(
1− �

2

)
, (2.30)

where F−1
Tn

denotes the inverse of the cdf of Tn.

Example 2.3.12. Give a 95% confidence interval for the mean of a normal
distribution based on the sample mean and variance computed from a sample
of size n = 20.

Solution: In this case, � = 0.5 and Tn ∼ t(19).

To find t
�/2

we may use the TINV function in MS Excel, which
gives the inverse of the two–tailed cumulative distribution function
of random variable with a t distribution. That is, the inverse of the
function

P(∣Tn∣ > t) for t > 0.

The format for this function is

TINV(probability,degrees_freedom)



42 CHAPTER 2. ESTIMATION

In this case the probability of the two tails is � = 0.05 and the
number of degrees of freedom is 19. Thus, according to (2.30), t

�/2

is given by
TINV(0.05, 19) ≈ 2.09,

where we have used 0.05 because TINV in MS Excel gives two-tailed
probability distribution values.

In R, the inverse cdf for a random variable with a t distribution is
qt function whose format is

qt(probability, df).

Thus, in R, for � = 0.05,

t
�/2
≈ qt(0.975, 19) ≈ 2.09.

Hence the 95% confidence interval for the mean, �, of a normal(�, �2)
distribution based on the sample mean, Xn, and the sample variance,
S2
n, is (

Xn − 2.09
Sn√
n
,Xn + 2.09

Sn√
n

)
, (2.31)

where n = 20. □

Example 2.3.13. Obtain a 95% confidence interval for the average number of
popcorn kernels in a 1/4–cup based on the data in Table 1.2 on page 8.

Solution: Assume that the the underlying distribution of the count
of kernels in 1/4–cup is normal(�, �2), where � is the parameter we
are trying to estimate and �2 is unknown.

The sample mean, Xn, based on the sample in Table 1.2 on page
8 is Xn ≈ 342. The sample standard deviation is Sn ≈ 35. Thus,
using the formula in (2.31) we get that

(326, 358)

is a 95% confidence interval for the average number of kernels in one
quarter cup. □



Chapter 3

Hypothesis Testing

In the examples of the previous chapters, we have assumed certain underlying
distributions which depended on a parameter or more. Based on that assump-
tion, we have obtained estimates for a parameter through calculations made
with the values of a random sample; this process yielded statistics which can
be used as estimators for the parameters. Assuming an underlying distribu-
tion allowed as to determine the sampling distribution for the statistic; in turn,
knowledge of the sampling distribution permitted the calculations of probabili-
ties that estimates are within certain range of a parameter.

For instance, the confidence interval estimate for the average number of
popcorn kernels in one–quarter cup presented Example 2.3.13 on page 42 re-
lied on the assumption that the number of kernels in one–quarter cup follows
a normal(�, �2) distribution. There is nothing sacred about the normality as-
sumption. The assumption was made because a lot is known about the normal
distribution and therefore the assumption was a convenient one to use in order
to illustrate the concept of a confidence interval. In fact, cursory study of the
data in Table 1.2 on page 8 reveals that the shape of the distribution might not
be as bell–shaped as one would hope; see the histogram of the data in Figure
3.0.1 on page 44, where N denotes the number of kernels in one–quarter cup.
Nevertheless, the hope is that, if a larger sample of one–quarter cups of kernels
is collected, then we would expect to see the numbers bunching up around some
value close to the true mean count of kernels in one–quarter cup.

The preceding discussion underscores the fact that assumptions, which are
made to facilitate the process of parameter estimation, are also there to be
questioned. In particular, the following question needs to be addressed: Does
the assumed underlying distribution truly reflects what is going on in the real
problem being studied? The process of questioning assumptions falls under the
realm of Hypothesis Testing in statistical inference. In this Chapter we discuss
how this can done. We begin with the example of determining whether the
number of unpopped kernels in one–quarter cup follows a Poisson distribution.

43
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Figure 3.0.1: Histogram of Data in Table 1.2

3.1 Chi–Square Goodness of Fit Test

We begin with the example of determining whether the counts of unpopped
kernels in one–quarter cup shown in Table 1.1 on page 6 can be accounted for
by a Poisson(�) distribution, where � is the average number of unpopped kernels
in one quarter cup. A point estimate for � is then given by the average of the
values in the table; namely, 56. Before we proceed any further, I must point out
that the reason that I am assuming a Poisson model for the data in Table 1.1 is
merely for the sake of illustration of the Chi–Square test that we’ll be discussing
in this section. However, a motivation for the use of the Poisson model is that
a Poisson random variable is a limit of binomial random variables as n tends to
infinity under the condition that np = � remains constant (see your solution to
Problem 5 in Assignment 2). However, this line of reasoning would be justified
if the probability that a given kernel will not pop is small, which is not really
justified in this situation since, by the result in Example 2.2.2 on page 17, a 95%
confidence interval for p is (0.109, 0.183). In addition, a look at the histogram
of the data in Table 1.1, shown in Figure 3.1.2, reveals that the shape of that
distribution for the number of unpopped kernels is far from being Poisson. The
reason for this is that the right tail of a Poisson distribution should be thinner
than that of the distribution shown in Figure 3.1.2.

Moreover, calculation of the sample variance for the data in Table 1.1 yields
1810, which is way too far from the sample mean of 56. Recall that the mean
and variance of a Poisson(�) distribution are both equal to �.
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Figure 3.1.2: Histogram of data for unpopped kernels in Table 1.1

Despite all of the objections to the applicability of the Poisson model to
the unpopped kernels data listed previously, I will proceed with the Poisson
assumption in order to illustrate the Chi–Square Goodness of Fit method, which
provides a quantitative way to reject the Poisson model with confidence.

Thus, assuming that the Poisson model is the mechanism behind the ob-
servations of unpopped kernels, we may compute the probabilities of observing
certain counts of unpopped kernels by using the pmf

p
X

(k) =
�k

k!
e−� for k = 0, 1, 2, . . . ,

and 0 elsewhere, where � is taken to be the estimated value of 56. Hence, the
probability that we observe counts between 0 and 50 is

P(0 ⩽ X ⩽ 50) =

50∑
k=0

p
X

(k) ≈ 0.2343;

between 51 and 55:

P(51 ⩽ X ⩽ 55) =

55∑
k=51

p
X

(k) ≈ 0.2479;

between 56 and 60:

P(56 ⩽ X ⩽ 60) =

60∑
k=56

p
X

(k) ≈ 0.2487;
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and 61 and above:

P(X ⩾ 61) =

∞∑
k=61

p
X

(k) ≈ 0.2691.

We have therefore divided the range of possible observations into categories, and
the probabilities computed above give the likelihood a given observation (the
count of unpopped kernels, in this case) will fall in a given category, assuming
that a Poisson model is driving the process. Using these probabilities, we can
predict how many observations out of the 27 will fall, on average, in each cat-
egory. If the probability that a count will fall in category i is pi, and n is the
total number of observations (in this case, n = 27), then the predicted number
of counts in category i is

Ei = npi.

Table 3.1 shows the predicted values in each category as well as the actual
(observed) counts.

Category Counts pi Predicted Observed
(i) Range Counts Counts
1 0 ⩽ X ⩽ 50 0.2343 6 14
2 51 ⩽ X ⩽ 55 0.2479 7 3
3 56 ⩽ X ⩽ 60 0.2487 7 2
4 X ⩾ 61 0.2691 7 8

Table 3.1: Counts Predicted by the Poisson Model

The last column in Table 3.1 shows that actual observed counts based on the
data in Table 1.1 on page 6. Are the large discrepancies between the observed
and predicted counts in the first three categories in Table 3.1 enough evidence
for us to dismiss the Poisson hypothesis? One of the goals of this chapter is to
answer this question with confidence. We will need to find a way to measure
the discrepancy that will allow us to make statements based on probability
calculations. A measure of the discrepancy between the values predicted by
an assumed probability model and the values that are actually observed in the
data was introduced by Karl Pearson in 1900, [Pla83]. In order to motivate
the Pearson’s statistic, we first present an example involving the multinomial
distribution.

3.1.1 The Multinomial Distribution

Consider the general situation of k categories whose counts are given by random
variables X1, X1, . . . , Xk. Assume that there is a total n of observations so that

X1 +X2 + ⋅ ⋅ ⋅+Xk = n. (3.1)
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We assume that the probability that a count is going to fall in category i is pi
for i = 1, 2, . . . , k. Assume also that the categories are mutually exclusive and
exhaustive so that

p1 + p2 + ⋅ ⋅ ⋅+ pk = 1. (3.2)

Then, the distribution of the random vector

X = (X1, X2, . . . , Xk) (3.3)

is multinomial so that the joint pmf of the random variables X1, X1, . . . , Xk,
given that X1 +X2 + ⋅ ⋅ ⋅+Xk = n, is

p
(X1,X2,...,Xk)

(n1, n2, . . . , nk) =

⎧⎨⎩
n!

n1!n2! ⋅ ⋅ ⋅nk!
pn1

1 pn2
2 ⋅ ⋅ ⋅ p

nk
k if

∑k
i=1 nk = n;

0 otherwise.

(3.4)
We first show that eachXi has marginal distribution which is binomial(n, pi),

so that
E(Xi) = npi for all i = 1, 2, . . . , k,

and
var((Xi)) = npi(1− pi) for all i = 1, 2, . . . , k.

Note that the X1, X2, . . . , Xk are not independent because of the relation in
(3.1). In fact, it can be shown that

cov(Xi, Xj) = −npjpj for i ∕= j.

We will first establish that the marginal distribution of Xi is binomial. We
will show it for X1 in the following example. The proof for the other variables
is similar. In the proof, though, we will need the following extension of the
binomial theorem known as the multinomial theorem [CB01, Theorem 4.6.4, p.
181].

Theorem 3.1.1 (Multinomial Theorem). Let n, n1, n2, . . . , nk denote non–
negative integers, and a1, a2, . . . , ak be real numbers. Then,

(a1 + a2 + ⋅ ⋅ ⋅+ ak)n =
∑

n1+n2+⋅⋅⋅+nk=n

n!

n1!n2! ⋅ ⋅ ⋅nk!
an1

1 an2
2 ⋅ ⋅ ⋅ a

nk
k ,

where the sum is take over all k–tuples of nonnegative integers, n1, n2, . . . , nk
which add up to n.

Remark 3.1.2. Note that when k = 2 in Theorem 3.1.1 we recover the binomial
theorem,

Example 3.1.3. Let (X1, X2, . . . , Xk) have a multinomil distribution with pa-
rameters n, p1, p2, . . . , pk. Then, the marginal distribution ofX1 is binomial(n, p1).
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Solution: The marginal distribution of X1 has pmf

p
X1

(n1) =
∑

n2,n3,...,nk
n2+n3+...+nk=n−n1

n!

n1!n2! ⋅ ⋅ ⋅nk!
pn1

1 pn2
2 ⋅ ⋅ ⋅ p

nk
k ,

where the summation is taken over all nonnegative, integer values of
n2, n3, . . . , nk which add up to n− n1. We then have that

p
X1

(n1) =
pn1

1

n1!

∑
n2,n3,...,nk

n2+n3+...+nk=n−n1

n!

n2! ⋅ ⋅ ⋅nk!
pn2

2 ⋅ ⋅ ⋅ p
nk
k

=
pn1

1

n1!

n!

(n− n1)!

∑
n2,n3,...,nk

n2+n3+...+nk=n−n1

(n− n1)!

n2! ⋅ ⋅ ⋅nk!
pn2

2 ⋅ ⋅ ⋅ p
nk
k

=

(
n

n1

)
pn1

1 (p2 + p3 + ⋅ ⋅ ⋅+ pk)n−n1 ,

where we have applied the multinomial theorem (Theorem 3.1.1).
Using (3.2) we then obtain that

p
X1

(n1) =

(
n

n1

)
pn1

1 (1− p1)n−n1 ,

which is the pmf of a binomial(n, p1) distribution. □

3.1.2 The Pearson Chi-Square Statistic

We first consider the example of a multinomial random vector (X1, X2) with
parameters n, p1, p2; in other words, there are only two categories and the counts
in each category are binomial(n, pi) for i = 1, 2, with X1 +X2 = n. We consider
the situation when n is very large. In this case, the random variable

Z =
X1 − np1√
np1(1− p1)

has an approximate normal(0, 1) distribution for large values of n. Consequently,
for large values of n,

Z2 =
(X1 − np1)2

np1(1− p1)

has an approximate �2(1) distribution.
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Note that we can write

Z2 =
(X1 − np1)2(1− p1) + (X1 − np1)2p1

np1(1− p1)

=
(X1 − np1)2

np1
+

(X1 − np1)2

n(1− p1)

=
(X1 − np1)2

np1
+

(n−X2 − np1)2

n(1− p1)

=
(X1 − np1)2

np1
+

(X2 − n(1− p1))2

n(1− p1)

=
(X1 − np1)2

np1
+

(X2 − np2)2

np2
.

We have therefore proved that, for large values of n, the random variable

Q =
(X1 − np1)2

np1
+

(X2 − np2)2

np2

has an approximate �2(1) distribution.
The random variable Q is the Pearson Chi–Square statistic for k = 2.

Theorem 3.1.4 (Pearson Chi–Square Statistic). Let (X1, X2, . . . , Xk) be a ran-
dom vector with a multinomial(n, p1, . . . , pk) distribution. The random variable

Q =

k∑
i=1

(Xi − npi)2

npi
(3.5)

has an approximate �2(k − 1) distribution for large values of n. If the pis
are computed assuming an underlying distribution with c unknown parameters,
then the number of degrees of freedom in the chi–square distribution for Q get
reduced by c. In other words

Q ∼ �2(k − c− 1) for large values of n.

Theorem 3.1.4, the proof of which is relegated to Appendix A on page 87 in
these notes, forms the basis for the Chi–Square Goodness of Fit Test. Examples
of the application of this result will be given in subsequent sections.

3.1.3 Goodness of Fit Test

We now go back to the analysis of the data portrayed in Table 3.1 on page 46.
Letting X1, X2, X3, X4 denote the observed counts in the fourth column of the
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table, we compute the value of the Pearson Chi–Square statistic according to
(3.5) to be

Q̂ =

4∑
i=1

(Xi − npi)2

npi
≈ 16.67,

where, in this case, n = 27 and the pis are given in the third column of Table
3.1. This is the measure of how far the observed counts are from the counts
predicted by the Poisson assumption. How significant is the number 16.67? Is
it a big number or not? More importantly, how probable would a value like
16.67, or higher, be if the Poisson assumption is true? The last question is
one we could answer approximately by using Pearson’s Theorem 3.1.4. Since,
Q ∼ �2(2) in this case, the answer to the last question is

p = P(Q > 16.67) ≈ 0.0002,

or 0.02%, less than 1%, which is a very small probability. Thus, the chances of
observing the counts in the fourth column of Table 3.1 on page 46, under the
assumption that the Poisson hypothesis is true, are very small. The fact that
we did observe those counts, and the counts came from observations recorded in
Table 1.1 on page 6 suggest that it is highly unlikely that the counts of unpopped
kernels in that table follow a Poisson distribution. We are therefore justified in
rejecting the Poisson hypothesis on the basis on not enough statistical support
provided by the data.

3.2 The Language and Logic of Hypothesis Tests

The argument that we followed in the example presented in the previous section
is typical of hypothesis tests.

∙ Postulate a Null Hypothesis. First, we postulated a hypothesis that
purports to explain patters observed in data. This hypothesis is the one
to be tested against the data. In the example at hand, we want to test
whether the counts of unpopped kernels in a one–quarter cup follow a
Poisson distribution. The Poisson assumption was used to determine
probabilities that observations will fall into one of four categories. We
can use these values to formulate a null hypothesis, Ho, in terms of the
the predicted probabilities; we write

Ho : p1 = 0.2343, p2 = 0.2479, p3 = 0.2487, p4 = 0.2691.

Based on probabilities in Ho, we compute the expected counts in each
categories

Ei = npi for i = 1, 2, 3, 4.

Remark 3.2.1 (Why were the categories chosen the way we chose them?).
Pearson’s Theorem 3.1.4 gives an approximate distribution for the Chi–
Square statistic in (3.5) for large values of n. A rule of thumb to justify
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the use the Chi–Square approximation to distribution of the Chi–Square
statistic, Q, is to make sure that the expected count in each category is 5
or more. That is why we divided the range of counts in Table 1.1 on page
6 into the four categories shown in Table 3.1 on page 46.

∙ Compute a Test Statistic. In the example of the previous section,
we computed the Pearson Chi–Square statistic, Q̂, which measures how
far the observed counts, X1, X2, X3, X4, are from the expected counts,
E1, E2, E3, E4:

Q̂ =

4∑
i=1

(Xi − Ei)2

Ei
.

According to Pearson’s Theorem, the random variable Q given by (3.5);
namely,

Q =

4∑
i=1

(Xi − npi)2

npi

has an approximate �2(4− 1− 1) distribution in this case.

∙ Compute or approximate a p–value. A p–value for a test is the
probability that the test statistic will attain the computed value, or more
extreme ones, under the assumption that the null hypothesis is true. In
the example of the previous section, we used the fact that Q has an ap-
proximate �2(2) distribution to compute

p–value = P(Q ⩾ Q̂).

∙ Make a decision. Either we reject or we don’t reject the null hypothesis.
The criterion for rejection is some threshold, � with 0 < � < 1, usually
some small probability, say � = 0.01 or � = 0.05.

We reject Ho if p–value < �; otherwise we don’t reject Ho.

We usually refer to � as a level of significance for the test. If p–value < �
we say that we reject Ho at the level of significance �.

In the example of the previous section

p–value ≈ 0.0002 < 0.01;

Thus, we reject the Poisson model as an explanation of the distribution for
the counts of unpopped kernels in Table 1.1 on page 6 at the significance
level of � = 1%.

Example 3.2.2 (Testing a binomial model). We have seen how to use a chi–
square goodness of fit test to determine that the Poisson model for the distribu-
tion of counts of unpopped kernels in Table 1.1 on page 6 is not supported by
the data in the table. A more appropriate model would be a binomial model.
In this case we have two unknown parameters: the mean number of kernels,
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n, in one–quarter cup, and the probability, p, that a given kernel will not pop.
We have estimated n independently using the data in Table 1.2 on page 8 to
be n̂ = 342 according to the result in Example 2.3.13 on page 42. In order to
estimate p, we may use the average number of unppoped kernels in one–quarter
cup from the data in Table 1.1 on page 6 and then divide that number by the
estimated value of n to obtain the estimate

p̂ =
56

342
≈ 0.1637.

Thus, in this example, we assume that the counts, X, of unpopped kernels in
one–quarter cup in Table 1.1 on page 6 follows the distribution

X ∼ binomial(n̂, p̂).

Category Counts pi Predicted Observed
(i) Range Counts Counts
1 0 ⩽ X ⩽ 50 0.2131 6 14
2 51 ⩽ X ⩽ 55 0.2652 7 3
3 56 ⩽ X ⩽ 60 0.2700 7 2
4 X ⩾ 61 0.2517 7 8

Table 3.2: Counts Predicted by the Binomial Model

Table 3.2 shows the probabilities predicted by the binomial hypothesis in
each of the categories that we used in the previous example in which we tested
the Poisson hypothesis. Observe that the binomial model predicts the same
expected counts as the Poisson model. We therefore get the same value for
the Pearson Chi–Square statistic, Q̂ = 16.67. In this case the approximate,
asymptotic distribution of Q is �2(1) because we estimated two parameters, n
and p, to compute the pis. Thus, the p–value in this case is approximated by

p–value ≈ 4.45× 10−5,

which is a very small probability. Thus, we reject the binomial hypothesis.
Hence the hypothesis that distribution of the counts of unpopped kernels follows
a binomial model is not supported by the data. Consequently, the interval
estimate for p which we obtained in Example 2.2.2 on page 17 is not justified
since that interval was obtained under the assumption of a binomial model. We
therefore need to come up with another way to obtain an interval estimate for
p.

At this point we need to re–evaluate the model and re–examine the assump-
tions that went into the choice of the Poisson and binomial distributions as
possible explanations for the distribution of counts in Table 1.1 on page 6. An
important assumption that goes into the derivations of both models is that of
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independent trials. In this case, a trial consists of determining whether a given
kernel will pop or not. It was mentioned in Section 1.1.1 that a kernel in a hot–
air popper might not pop because it gets pushed out of the container because of
the popping of kernels in the neighborhood of the given kernel. Thus, the event
that a kernel will not pop will depend on whether a nearby kernel popped or
not, and no necessarily on some intrinsic property of the kernel. These consid-
erations are not consistent with the independence assumption required by bout
the Poisson and the binomial models. Thus, these models are not appropriate
for this situation.

How we proceed from this point on will depend on which question we want
to answer. If we want to know what the intrinsic probability of not popping
for a given kernel is, independent of the popping mechanism that is used, we
need to redesign the experiment so that the popping procedure that is used
will guarantee the independence of trials required by the binomial or Poisson
models. For example, a given number of kernels, n, might be laid out on flat
surface in a microwave oven.

If we want to know what the probability of not popping is for the hot–
air popper, we need to come up with another way to model the distribution.
This process is complicated by the fact that there are two mechanisms at work
that prevent a given from popping: an intrinsic mechanism depending on the
properties of a given kernel, and the swirling about of the kernels in the container
that makes it easy for the popping of a given kernel to cause other kernels to
be pushed out before they pop. Both of these mechanisms need to be modeled.

Example 3.2.3 (A test of normality). In this example we test whether the
counts of kernels in one–quarter cup shown in Table 1.2 on page 8 can be
assumed to come from a normal distribution. We first use the data in the table
to estimate � and �2. Based on the calculations in Example 2.3.13 on page 42,
we get the following estimates

�̂ = Xn ≈ 342,

and

�̂ = Sn ≈ 35.

We therefore assume that

N ∼ normal(�̂, �̂2)

and use the corresponding pdf to compute the probabilities that the counts will
lie in certain ranges.

Table 3.3 on page 54 shows those ranges and their corresponding probabili-
ties. Note that the ranges for the counts were chosen so that the expected count
for each category is 5. Table 3.3 shows also the predicted and observed counts
from which we get the value for the chi–square statistic, Q, to be Q̂ = 2/5.
In this case Q has an approximate �2(1) asymptotic distribution, according to
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Category Counts pi Predicted Observed
(i) Range Counts Counts
1 N ⩽ 319 0.2555 5 6
2 319 < N ⩽ 342 0.2445 5 5
3 342 < N ⩽ 365 0.2445 5 5
4 N > 365 0.2555 5 4

Table 3.3: Kernels in 1/4–cup Predicted by the Normal Model

Pearson’s Theorem, since we estimated two parameters, � and �, based on the
data. We therefore obtain the approximate p–value

p–value = P(Q ⩾ Q̂) ≈ 0.5271.

Thus, based on the data, we cannot reject the null hypothesis that the counts
can be described as following a normal distribution. Hence, we were justified
in assuming a normal model when estimating the mean number of kernels in
one–quarter cup in Example 2.3.13 on page 42.

3.3 Hypothesis Tests in General

Hypothesis testing is a tool in statistical inference which provides a general
framework for rejecting certain hypothesis, known as the null hypothesis and
denoted by Ho, against an alternative hypothesis, denoted by H1. For in-
stance, in Example 3.2.3 on page 53 we tested the hypothesis that the counts
of kernel in a one–quarter cup, shown in Table 1.2 on page 8, follows a normal
distribution. In this case, denoting the counts of kernels by N , we may state
the null and alternative hypotheses as

Ho : N is normaly distributed

and
H1 : N is not normaly distributed.

Here is another example.

Example 3.3.1. We wish to determine whether a given coin is fair or not.
Thus, we test the null hypothesis

Ho : p =
1

2

versus the alternative hypothesis

H1 : p ∕= 1

2
,

where p denotes the probability that a given toss of the coin will yield a head.
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In order to tests the hypotheses in Example 3.3.1, we may perform an ex-
periment which consists of flipping the coin 400 times. If we let Y denote the
number of heads that we observe, then Ho may be stated as

Ho : Y ∼ binomial(400, 0.5).

Notice that this hypothesis completely specifies the distribution of the random
variable Y , which is known as a test statistic. On the other hand, the hy-
pothesis in the goodness of fit test in Example 3.2.3 on page 53 does not specify
a distribution. Ho in Example 3.2.3 simply states that the the count, N , of
kernels in one–quarter cup follows a normal distribution, but it does not specify
the parameters � and �2.

Definition 3.3.2 (Simple versus Composite Hypotheses). A hypothesis which
completely specifies a distribution is said to be a simple hypothesis. A hy-
pothesis which is not simple is said to be composite.

For example, the alternative hypothesis, H1 : p ∕= 0.5, in Example 3.3.1 is
composite since the test statistic, Y , for that test is binomial(400, p) where p is
any value between 0 and 1 which is not 0.5. Thus, H1 is a really a combination
of many hypotheses.

The decision to reject or not reject Ho in a hypothesis test is based on a
set of observations, X1, X2, . . . , Xn; these could be the outcomes of certain ex-
periment performed to test the hypothesis and are, therefore, random variables
with certain distribution. Given a set of of observations, X1, X2, . . . , Xn, a test
statistic, T = T (X1, X2, . . . , Xn), may be formed. For instance, in Example
3.3.1 on page 54, the experiment might consist of flipping the coin 400 times
and determining the number of heads. If the null hypothesis in that test is true,
then the 400 observations are independent Bernoulli(0.5) trials. We can define
the test statistic for this test to be

T =

400∑
i=1

Xi

so that, in Ho is true,
T ∼ binomial(400, 0.5).

A test statistic for a hypothesis test may be used to establish a criterion for
rejecting Ho. For instance in the coin tossing Example 3.3.1, we can say that
we reject the hypothesis that the coin is fair if

∣T − 200∣ > c; (3.6)

that is, the distance from the statistic T to the mean of the assumed distribution
is at least certain critical value, c. The condition in (3.6) constitutes a decision
criterion for rejection of Ho. It the null hypothesis is true and the observed
value, T̂ , of the test statistic, T , falls within the range specified by the rejection
criterion in (3.6), we mistakenly reject Ho when it is in fact true. This is known
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as a Type I error. The probability of committing a Type I error in the coin
tossing example is

P (∣T − 200∣ > c ∣ Ho true) .

Definition 3.3.3 (Significance Level). The largest probability of making a type
I error is denoted by � and is called the significance level of the test.

Example 3.3.4. In the coin tossing example (Example 3.3.1), we can set a given
significance level, �, as follows. Since the number of tosses is large, n = 400, we
can use the central limit theorem to get that

P (∣T − 200∣ > c ∣ Ho true) = P

(
∣T − 200∣√

400 ⋅ (0.5)(1− 0.5)
>

c

10

)

≈ P
(
∣Z∣ > c

10

)
,

where Z ∼ normal(0, 1). It then follows that, if we set

c

10
= z�/2,

where z�/2 is such that P(∣Z∣ > z�/2) = �, we obtain that c = 10z�/2. Hence,
the rejection criterion

∣T − 200∣ > 10z�/2

yields a test with a significance level �. For example, if � = 0.05, then we get
that z�/2 = 1.96 and therefore c = 19.6 ≈ 20. Hence, the test that rejects Ho if

T < 180 or T > 220

has a significance level of � = 0.05.

If the null hypothesis, Ho, is in fact false, but the hypothesis test does not
yield the rejection of Ho, then a type II error is made. The probability of a type
II error is denoted by �.

In general, a hypothesis test is concerned with the question of whether a
parameter, �, from certain underlying distribution is in a certain range or not.
Suppose the underlying distribution has pdf or pmf denoted by f(x ∣ �), where
we have explicitly expressed the dependence of the distribution function on the
parameter �; for instance, in Example 3.3.1, the underlying distribution is

f(x ∣ p) = px(1− p)1−x, for x = 0 or x = 1,

and 0 otherwise. The parameter � in this case is p, the probability of a success
in a Bernoulli(p) trial.

In the general setting, the null and alternative hypothesis are statements of
the form

Ho : � ∈ Ωo
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and
H1 : � ∈ Ω1

where Ωo and Ω1 are complementary subsets of a parameter space Ω = Ωo∪Ω1,
where Ωo ∩ Ω1 = ∅. In Example 3.3.1, we have that Ωo = {0.5} and

Ω1 = {p ∈ [0, 1] ∣ p ∕= 0.5}.

Given a set of observations, X1, X2, . . . , Xn, which may be assumed to be
iid random variables with distribution f(x ∣ �), we denote the set all possible
values of the n–tuple (X1, X2, . . . , Xn) by D. Consider a statistic

T = T (X1, X2, . . . , Xn).

A rejection region, R, for a test is defined by

R = {(x1, x2, . . . , xn) ∈ D ∣ T (x1, x2, . . . , xn) ∈ A}, (3.7)

where A is a subset of the real line. For example, in the coin tossing example,
we had the rejection region

R = {(x1, x2, . . . , xn) ∈ D ∣ ∣T (x1, x2, . . . , xn)− E(T )∣ > c},

or
R = {(x1, x2, . . . , xn) ∈ D ∣ ∣T (x1, x2, . . . , xn)− np∣ > c},

since, this this case, T ∼ binomial(n, p), where n = 400, and p depends on
which hypothesis we are assuming to be true. Thus, in this case, the set A in
the definition of the rejection region in (3.7) is

A = (−∞, np− c) ∪ (np+ c,∞).

Given a rejection region, R, for a test of hypotheses

Ho : � ∈ Ωo

and
H1 : � ∈ Ω1,

let
P�((x1, x1, . . . , xn) ∈ R)

denote the probability that the observation values fall in the rejection region
under the assumption that the random variables X1, X2, . . . , Xn are iid with
distribution f(x ∣ �). Thus,

max
�∈Ωo

P�((x1, x1, . . . , xn) ∈ R)

is the largest probability that Ho will be rejected given that Ho; this is the
significance level for the test; that is,

� = max
�∈Ωo

P�((x1, x1, . . . , xn) ∈ R).
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In Example 3.3.1 on page 54, Ωo = {0.5}; thus,

� = P0.5 ((x1, x2, . . . , xn) ∈ R) ,

where

R = {(x1, x2, . . . , xn) ∣ T (x1, x2, . . . , xn) < np−c, or T (x1, x2, . . . , xn) > np+c}.

By the same token, for � ∈ Ω1,

P�((x1, x1, . . . , xn) ∈ R)

gives the probability of rejecting the null hypothesis when Ho is false. It then
follows that the probability of a Type II error, for the case in which � ∈ Ω1, is

�(�) = 1− P�((x1, x1, . . . , xn) ∈ R);

this is the probability of not rejecting the null hypothesis when Ho is in fact
false.

Definition 3.3.5 (Power of a Test). For � ∈ Ω1, the function

P� ((x1, x1, . . . , xn) ∈ R))

is called the power function for the test at �; that is, P� ((x1, x1, . . . , xn) ∈ R))
is the probability of rejecting the null hypothesis when it is in fact false. We
will use the notation


(�) = P� ((x1, x1, . . . , xn) ∈ R)) for � ∈ Ω1.

Example 3.3.6. In Example 3.3.1 on page 54, consider the rejection region

R = {(x1, x2, . . . , xn) ∈ D ∣ ∣T (x1, x2, . . . , xn)− 200∣ > 20}

where

T (x1, x2, . . . , xn) =

n∑
j=1

xj ,

for n = 400, in the test of Ho : p = 0.5 against H1 : p ∕= 0.5. The significance
level for this test is

� = P0.5 (∣T − 200∣ > 20) ,

where
T ∼ binomial(400, 0.5).

Thus,
� = 1− P (∣T − 200∣ ⩽ 20)

= 1− P (180 ⩽ T ⩽ 220)

= 1− P (179.5 < T ⩽ 220.5) ,
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where we have used the continuity correction, since we are going to be applying
the Central Limit Theorem to approximate a discrete distribution; namely, T
has an approximate normal(200, 100) distribution in this case, since n = 400 is
large. We then have that

� ≈ 1− P (179.5 < Y ⩽ 220.5) ,

where Y ∼ normal(200, 100). Consequently,

� ≈ 1− (F
Y

(220.5)− F
Y

(179.5)),

where F
Y

is cdf of Y ∼ normal(200, 100). We then have that

� ≈ 0.0404.

We next compute the power function for this test:


(p) = P(∣T − 200∣ > 20),

where

T ∼ binomial(400, p) for p ∕= 1

2
.

We write

(p) = P(∣T − 200∣ > 20)

= 1− P(∣T − 200∣ ⩽ 20)

= 1− P(180 ⩽ T ⩽ 220)

= 1− P(179.5 < T ⩽ 220.5),

where we have used again the continuity correction, since we are going to be
applying the Central Limit Theorem to approximate the distribution of T by
that of a normal(400p, 400p(1− p)) random variable. We then have that


(p) ≈ 1− P(179.5 < Yp ⩽ 220.5),

where Yp denotes a normal(400p, 400p(1− p)) random variable. Thus,


(p) ≈ 1− (F
Yp

(220.5)− F
Yp

(179.5)), (3.8)

where F
Yp

denotes the cdf of Yp ∼ normal(400p, 400p(1− p)).
Table 3.4 on page 60 shows a few values of p and their corresponding ap-

proximate values of 
(p) according to (3.8). A sketch of the graph of 
 as a
function of p is shown in Figure 3.3.3 on page 61.

The sketch in Figure 3.3.3 was obtained using the plot function in R by
typing

plot(p,gammap,type=’l’,ylab="Power at p")
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p 
(p)
0.10 1.0000
0.20 1.0000
0.30 1.0000
0.40 0.9767
0.43 0.7756
0.44 0.6378
0.45 0.4800
0.46 0.3260
0.47 0.1978
0.48 0.1076
0.49 0.0566
0.50 0.0404
0.51 0.0566
0.52 0.1076
0.53 0.1978
0.54 0.3260
0.55 0.4800
0.56 0.6378
0.57 0.7756
0.60 0.9767
0.70 1.0000
0.80 1.0000
0.90 1.0000

Table 3.4: Table of values of p and 
(p)
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Figure 3.3.3: Sketch of graph of power function for test in Example 3.3.6

where p and gammap are arrays where values of p and 
(p) were stored. These
were obtained using the commands:

p <- seq(0.01,0.99,by=0.01)

and

gammap <- 1-(pnorm(220.5,400*p,sqrt(400*p*(1-p)))

-pnorm(179.5,400*p,sqrt(400*p*(1-p))))

Observe that the sketch of the power function in Figure 3.3.3 on page 61
suggests that 
(p) tends to 1 as either p → 0 or p → 1, and that 
(p) → � as
p→ 0.5.

3.4 Likelihood Ratio Test

Likelihood ratio tests provide a general way of obtaining a test statistic, Λ,
called a likelihood ratio statistic, and a rejection criterion of the form

Λ ⩽ c,

for some critical value c, for the test of the hypothesis

Ho : � ∈ Ωo
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versus the alternative
H1 : � ∈ Ω1,

based on a random sample, X1, X2, . . . , Xn, coming a distribution with distri-
bution function f(x ∣ �). Here f(x ∣ �) represents a pdf or a pmf, Ω = Ωo ∪ Ω1

is the parameter space, and Ωo ∩ Ω1 = ∅.
Before we define the likelihood ratio statistic, Λ, we need to define the con-

cept of a likelihood function.

Definition 3.4.1 (Likelihood Function). Given a random sample, X1, X2, . . . , Xn,
from a distribution with distribution function f(x ∣ �), either a pdf or a pmf,
where � is some unknown parameter (either a scalar or a vector parameter), the
joint distribution of the sample is given by

f(x1, x2, . . . , xn ∣ �) = f(x1 ∣ �) ⋅ f(x2 ∣ �) ⋅ ⋅ ⋅ f(xn ∣ �),

by the independence condition in the definition of a random sample. If the
random variables, X1, X2, . . . , Xn, are discrete, f(x1, x2, . . . , xn ∣ �) gives the
probability of observing the values

X1 = x1, X2 = x2, . . . , Xn = xn,

under the assumption that the sample is taken from certain distribution with
parameter �. We can also interpret f(x1, x2, . . . , xn ∣ �o) as measuring the
likelihood that the parameter � will take on the value �o given that we have
observed the values x1, x2, . . . , xn in the sample. Thus, we call

f(x1, x2, . . . , xn ∣ �)

the likelihood function for the parameter � given the observations

X1 = x1, X2 = x2, . . . , Xn = xn,

and denote it by L(� ∣ x1, x2, . . . , xn); that is,

L(� ∣ x1, x2, . . . , xn) = f(x1, x2, . . . , xn ∣ �).

Example 3.4.2 (Likelihood function for independent Bernoulli(p) trials). Let
X1, X2, . . . , Xn be a random sample from a Bernoulli(p). Thus, the underlying
distribution in this case is

f(x ∣ p) = px(1− p)1−x for x = 0, 1 and 0 otherwise,

where 0 < p < 1.
We then get that the likelihood function for p, based on the sample obser-

vations, is

L(p ∣ x1, x2, . . . , xn) = px1(1− p)1−x1 ⋅ px2(1− p)1−x2 ⋅ ⋅ ⋅ pxn(1− p)1−xn

= py(1− p)n−y

where y =

n∑
i=1

xi.
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Definition 3.4.3 (Likelihood Ratio Statistic). For a general hypothesis test of

Ho : � ∈ Ωo

against the alternative

H1 : � ∈ Ω1,

based on a random sample, X1, X2, . . . , Xn, from a distribution with distribution
function f(x ∣ �), the likelihood ratio statistic, Λ(x1, x2, . . . , xn), is defined
by

Λ(x1, x2, . . . , xn) =

sup
�∈Ωo

L(� ∣ x1, x2, . . . , xn)

sup
�∈Ω

L(� ∣ x1, x2, . . . , xn)
,

where Ω = Ωo ∪ Ω1 with Ωo ∩ Ω1 = ∅.

Example 3.4.4 (Simple hypotheses for Bernoulli(p) trials). Consider the test
of

Ho : p = po

versus

H1 : p = p1,

where p1 ∕= po, based on random sample of size n from a Bernoulli(p) distribu-
tion, for 0 < p < 1. The likelihood ratio statistic for this test is

Λ(x1, x2, . . . , xn) =
L(po ∣ x1, x2, . . . , xn)

max{L(po ∣ x1, x2, . . . , xn), L(p1 ∣ x1, x2, . . . , xn)}
,

since, for this case, Ωo = {po} and Ω = {po, p1}; thus,

Λ(x1, x2, . . . , xn) =
pyo(1− po)n−y

max{pyo(1− po)n−y, py1(1− p1)n−y}
,

where y =
n∑
i=1

xi.

Definition 3.4.5 (Likelihood Ratio Test). We can use the likelihood ratio
statistic, Λ(x1, x2, . . . , xn), to define the rejection region

R = {(x1, x2, . . . , xn) ∣ Λ(x1, x2, . . . , xn) ⩽ c},

for some critical value c with 0 < c < 1. This defines a likelihood ratio test
(LRT) for Ho against H1.

The rationale for this definition is that, if the likelihood ratio of the sample
is very small, the evidence provided by the sample in favor of the null hypothesis
is not strong in comparison with the evidence for the alternative. Thus, in this
case it makes sense to reject Ho.
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Example 3.4.6. Find the likelihood ratio test for

Ho : p = po

versus

H1 : p = p1,

for po ∕= p1, based on a random sample X1, X2, . . . , Xn from a Bernoulli(p)
distribution for 0 < p < 1.

Solution: The rejection region for the likelihood ratio test is given
by

R : Λ(x1, x2, . . . , xn) ⩽ c,

for 0 < c < 1, where

Λ(x1, x2, . . . , xn) =
pyo(1− po)n−y

max{pyo(1− po)n−y, py1(1− p1)n−y}
,

with

y =

n∑
i=1

xi.

Thus, for R to be defined, we must have that

Λ(x1, x2, . . . , xn) =
pyo(1− po)n−y

py1(1− p1)n−y
;

otherwise Λ(x1, x2, . . . , xn) would be 1, and so we wouldn’t be able
to get the condition Λ(x1, x2, . . . , xn) ⩽ c to hold since c < 1. Thus,
the LRT for this example will reject Ho if(

po
p1

)y (
1− po
1− p1

)n−y
⩽ c,

or (
1− po
1− p1

)n(
po(1− p1)

p1(1− po)

)y
⩽ c.

Write

a =
1− po
1− p1

and r =
po(1− p1)

p1(1− po)
.

Then, the LRT rejection region is defined by

anry ⩽ c, (3.9)

where

y =

n∑
i=1

xi.
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We consider two cases:

Case 1: p1 > po. In this case, a > 1 and r < 1. Thus, taking the
natural logarithm on both sides of (3.9) and solving for y we get that
the rejection region for the LRT in this example is equivalent to

y ⩾
ln c− n ln a

ln r
.

In other words, the LRT will reject Ho if

Y ⩾ b,

where b =
ln (c/an)

ln r
> 0, and Y is the statistic

Y =

n∑
i=1

Xi,

which counts the number of successes in the sample.

Case 2: p1 < po. In this case, a < 1 and r > 1. We then get from
(3.9) the LRT in this example rejects Ho if

y ⩽
ln c− n ln a

ln r
.

In other words, the LRT will reject Ho if

Y ⩽ d,

where d =
ln c− n ln a

ln r
can be made to be positive by choosing

n >
ln c

ln a
, and Y is again the number of successes in the sample. □

We next consider the example in which we test

Ho : p = po

versus

H1 : p ∕= p0

based on a random sample X1, X2, . . . , Xn from a Bernoulli(p) distribution for
0 < p < 1. We would like to find the LRT rejection region for this test of
hypotheses.

In this case the likelihood ratio statistic is

Λ(x1, x2, . . . , xn) =
L(po ∣ x1, x2, . . . , xn)

sup
1<p<1

L(p ∣ x1, x2, . . . , xn)
, (3.10)
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where L(p ∣ x1, x2, . . . , xn) = py(1− p)n−y for y =

n∑
i=1

xi.

In order to determine the denominator in the likelihood ratio in (3.10), we
need to maximize the function L(p ∣ x1, x2, . . . , xn) over 0 < p < 1. We can do
this by maximizing the natural logarithm of the likelihood function,

ℓ(p) = ln(L(p ∣ x1, x2, . . . , xn)), 0 < p < 1,

since ln : (0,∞)→ ℝ is a strictly increasing function. Thus, we need to maximize

ℓ(p) = y ln p+ (n− y) ln(1− p) over 0 < p < 1.

In order to do this, we compute the derivatives

ℓ′(p) =
y

p
− n− y

1− p
,

and

ℓ′′(p) = − y

p2
− n− y

(1− p)2
,

and observe that ℓ′′(p) < 0 for all 1 < p < 1. Thus, a critical point of ℓ; that is,
a solution of ℓ′(p) = 0, will yield a maximum for the function ℓ(p).

Solving for p in ℓ′(p) = 0 yields the critical point

p̂ =
1

n
y,

which is the sample proportion of successes. This is an example of a maximum
likelihood estimator (MLE) for p. In general, we have the following definition.

Definition 3.4.7 (Maximum Likelihood Estimator). Let X1, X2, . . . , Xn be a
random sample from a distribution with distribution function f(x ∣ �), for � in

some parameter space Ω. A value, �̂, of the parameter � such that

L(�̂ ∣ x1, x2, . . . , xn) = sup
�∈Ω

L(� ∣ x1, x2, . . . , xn)

is called a maximum likelihood estimator for �, or an MLE for �.

We therefore have that the likelihood ratio statistic for the test of Ho : p = po
versus H1 : p ∕= po, based on a random sample of size n from a Bernoulli(p)
distribution, is

Λ(x1, x2, . . . , xn) =
pyo(1− po)n−y

p̂y(1− p̂)n−y
,

where

y =

n∑
i=1

xi

and

p̂ =
1

n
y
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is the MLE for p based on the random sample.
Write the likelihood ratio statistic as

Λ(x1, x2, . . . , xn) =

(
po
p̂

)y (
1− po
1− p̂

)n−y

=

(
po
p̂

)y⎛⎜⎜⎝
1

po
− 1

1

po
− p̂

po

⎞⎟⎟⎠
n−y

,

and set t =
p̂

po
. Then, Λ can be written as a function of t as follows

Λ(t) =
1

tnpot
⋅
(

1− po
1− pot

)n−npot
, for 0 ⩽ t ⩽

1

po
,

where we have used the fact that p̂ =
1

n
y so that y = npot.

We now proceed to sketch the graph of Λ as a function of t for 0 ⩽ t ⩽
1

po
.

First note that Λ(t) attains its maximum value of 1 when t = 1; namely,
when p̂ = po. That t = 1 is the only value of t at which the maximum for Λ(t)
is attained can be verified by showing that

ℎ(t) = ln(Λ(t)) = −npot ln t− (n− npot) ln

(
1− pot
1− po

)
attains its maximum solely at t = 1. Computing the derivative of ℎ with respect
to t we find that

ℎ′(t) = −npo ln t+ npo ln

(
1− pot
1− po

)

= npo ln

(
1− pot
t(1− po)

)
.

Thus, ℎ′(t) = 0 if and only if

1− pot
t(1− po)

= 1,

which implies that t = 1 is the only critical point of ℎ. The fact that t = 1
yields a maximum for ℎ can be seen by observing that the second derivative of
ℎ with respect to t,

ℎ′′(t) = −npo
t
− np2

o

1− pot
,

is negative for 0 < t <
1

po
.
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Observe also that lim
t→0+

ℎ(t) = ln[(1 − po)n] and lim
t→(1/po)−

ℎ(t) = ln[pno ], so

that

Λ(0) = (1− po)n and Λ(1/po) = pno .

Putting all the information about the graph for Λ(t) together we obtain a sketch
as the one shown in Figure 3.4.4,where we have sketched the case po = 1/4 and
n = 20 for 0 ⩽ t ⩽ 4. The sketch in Figure 3.4.4 suggests that, given any
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Figure 3.4.4: Sketch of graph of Λ(t) for po = 1/4, n = 20, and 0 ⩽ t ⩽ 4

positive value of c such that c < 1 and c > max{pno , (1 − po)
n}, there exist

positive values t1 and t2 such that 0 < t1 < 1 < t2 < 1/po and

Λ(t) = c for t = t1, t2.

Furthermore,

Λ(t) ⩽ c for t ⩽ t1 or t ⩾ t2.

Thus, the LRT rejection region for the test of Ho : p = po versus H1 : p ∕= po is
equivalent to

p̂

po
⩽ t1 or

p̂

po
⩾ t2,

which we could rephrase in terms of Y =

n∑
i=1

Xi as

R : Y ⩽ t1npo or Y ⩾ t2npo,
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for some t1 and t2 with 0 < t1 < 1 < t2. This rejection region can also be
phrased as

R : Y < npo − b or Y > npo + b,

for some b > 0. The value of b will then be determined by the significance level
that we want to impose on the test.

Example 3.4.8 (Likelihood ratio test based on a sample from a normal distri-
bution). We wish to test the hypothesis

Ho : � = �o, �
2 > 0

versus the alternative
H1 : � ∕= �o, �

2 > 0,

based on a random sample, X1, X2, . . . , Xn, from a normal(�, �2) distribution.
Observe that both Ho and H1 are composite hypotheses.

The likelihood function in this case is

L(�, � ∣ x1, x2, . . . , xn) =
e−(x1−�)2/2�2

√
2� �

⋅ e
−(x2−�)2/2�2

√
2� �

⋅ ⋅ ⋅ e
−(xn−�)2/2�2

√
2� �

=
e−
∑n
i=1(xi−�)2/2�2

(2�)n/2 �n
.

The likelihood ratio statistic is

Λ(x1, x2, . . . , xn) =

sup
�>0

L(�o, � ∣ x1, x2, . . . , xn)

L(�̂, �̂ ∣ x1, x2, . . . , xn)
, (3.11)

where �̂ is the MLE for � and �̂2 is the MLE for �2. To find these MLEs, we
need to maximize the natural logarithm of the likelihood function:

ℓ(�, � ∣ x1, x2, . . . , xn) = − 1

2�2

n∑
i=1

(xi − �)2 − n ln� − n

2
ln(2�).

We therefore need to look at the first partial derivatives

∂ℓ

∂�
(�, �) =

1

�2

n∑
i=1

(xi − �) =
n

�2
(x− �)

∂ℓ

∂�
(�, �) =

1

�3

n∑
i=1

(xi − �)2 − n

�
,

where x =
1

n

n∑
i=1

xi, and the second partial derivatives

∂2ℓ

∂�2
(�, �) = − n

�2
,
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∂2ℓ

∂�∂�
(�, �) =

∂2ℓ

∂�∂�
(�, �) = −2n

�3
(x− �),

and
∂2ℓ

∂�2
(�, �) = − 3

�4

n∑
i=1

(xi − �)2 +
n

�2
,

The critical points of ℓ(�, �) are solutions to the system⎧⎨⎩
∂ℓ

∂�
(�, �) = 0

∂ℓ

∂�
(�, �) = 0,

which yields
�̂ = x,

�̂2 =
1

n

n∑
i=1

(xi − x)2.

To see that ℓ(�, �) is maximized at these values, look at the Hessian matrix,⎛⎜⎜⎜⎜⎝
∂2ℓ

∂�2
(�, �)

∂2ℓ

∂�∂�
(�, �)

∂2ℓ

∂�∂�
(�, �)

∂2ℓ

∂�2
(�, �)

⎞⎟⎟⎟⎟⎠ ,

at (�̂, �̂) to get ⎛⎜⎜⎝
− n

�̂2
0

0 −2n

�̂2

⎞⎟⎟⎠ ,

which has negative eigenvalues. It then follows that ℓ(�, �) is maximized at
(�̂, �̂). Hence, x is the MLE for � and

�̂2 =
1

n

n∑
i=1

(xi − x)2

is the MLE for �2. Observe that �̂2 is not the sample variance, S2
n. In fact,

�̂2 =
n− 1

n
S2
n,

so that

E(�̂2) =
n− 1

n
�2,
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and so �̂2 is not an unbiased estimator of �2. It is, however, the maximum
likelihood estimator of �2.

We then have that the denominator in the likelihood ratio in (3.11) is

L(�̂, �̂ ∣ x1, x2, . . . , xn) =
e−
∑n
i=1(xi−x)2/2�̂2

(2�)n/2 �̂n
=

e−n/2

(2�)n/2 �̂n
.

To compute the numerator in (3.11), we need to maximize

ℓ(�) = ln(L(�o, � ∣ x1, x2, . . . , xn))

= − 1

2�2

n∑
i=1

(xi − �o)2 − n ln� − n

2
ln(2�).

Taking derivatives of ℓ we obtain

ℓ′(�) =
1

�3

n∑
i=1

(xi − �o)2 − n

�

and

ℓ′′(�) = − 3

�4

n∑
i=1

(xi − �o)2 +
n

�2
.

Thus, a critical point of ℓ(�) is the value, �, of � given by

�2 =
1

n

n∑
i=1

(xi − �o)2.

Note that

ℓ′′(�) = −2n

�2 < 0,

so that ℓ(�) is maximized when � = �. We then have that

sup
�>0

L(�o, � ∣ x1, x2, . . . xn) = L(�o, � ∣ x1, x2, . . . xn),

where

�2 =
1

n

n∑
i=1

(xi − �o)2.

Observe that

n∑
i=1

(xi − �o)2 =

n∑
i=1

(xi − x+ x− �o)2

=

n∑
i=1

(xi − x)2 +

n∑
i=1

(x− �o)2,
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since
n∑
i=1

2(xi − x)(x− �o) = 2(x− �o)
n∑
i=1

(xi − x) = 0.

We then have that
�2 = �̂2 + (x− �o)2. (3.12)

Consequently,

sup
�>0

L(�o, � ∣ x1, x2, . . . xn) =
e−
∑n
i=1(xi−�o)2/2�2

(2�)n/2 �n
=

e−n/2

(2�)n/2 �n
.

Thus, the likelihood ratio statistic in (3.11) is

Λ(x1, x2, . . . , xn) =

sup
�>0

L(�o, � ∣ x1, x2, . . . , xn)

L(�̂, �̂ ∣ x1, x2, . . . , xn)
=
�̂n

�n
.

Hence, an LRT will reject Ho is

�̂n

�n
⩽ c,

for some c with 0 < c < 1, or
�̂2

�2 ⩽ c
2/n,

or
�2

�̂2
⩾

1

c2/n
,

where
1

c2/n
> 1. In view of (3.12), we see that and LRT will reject Ho if

(x− �o)2

�̂2
⩾

1

c2/n
− 1 ≡ k,

where k > 0, and �̂2 is the MLE for �2. Writing
n− 1

n
S2
n for �̂2 we see that

an LRT will reject Ho if

∣x− �o∣
Sn/
√
n
⩾
√

(n− 1)k ≡ b,

where b > 0. Hence, the LRT can be based in the test statistic

Tn =
Xn − �o
Sn/
√
n
.

Note that Tn has a t(n−1) distribution if Ho is true. We then see that if t�/2,n−1

is such that
P(∣T ∣ ⩾ t�/2,n−1) = �, for T ∼ t(n− 1),
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then the LRT of Ho : � = �o versus H1 : � ∕= �o which rejects Ho if

∣Xn − �o∣
Sn/
√
n
⩾ t�/2,n−1,

has significance level �.
Observe also that the set of values of �o which do not get rejected by this

test is the open interval(
Xn − t�/2,n−1

Sn√
n
,Xn + t�/2,n−1

Sn√
n

)
,

which is a 100(1− �)% confidence interval for the mean, �, of a normal(�, �2)
distribution based on a random sample of size n from that distribution. This
provides another interpretation of a confidence interval based on a hypothesis
test.

3.5 The Neyman–Pearson Lemma

Consider a test of a simple hypothesis

Ho : � = �o

versus the alternative
H1 : � = �1

based on a random sample of size n from a distribution with distribution func-
tion f(x ∣ �). The likelihood ratio statistic in this case is

Λ(x1, x2, . . . , xn) =
L(�o ∣ x1, x2, . . . , xn)

L(�1 ∣ x1, x2, . . . , xn)
. (3.13)

The rejection region for the LRT is

R = {(x1, x2, . . . , xn) ∣ Λ(x1, x2, . . . , xn) ⩽ c} (3.14)

for some 0 < c < 1.
If the significance level of the test is �, then

� =

∫
R

f(x1, x2, . . . , xn ∣ �o) dx1dx2 ⋅ ⋅ ⋅ dxn,

for the case in which f(x ∣ �) is a pdf. Thus,

� =

∫
R

L(�o ∣ x1, x2, . . . , xn) dx1dx2 ⋅ ⋅ ⋅ dxn, (3.15)

It then follows that the power of the LRT is


(�1) =

∫
R

L(�1 ∣ x1, x2, . . . , xn) dx1dx2 ⋅ ⋅ ⋅ dxn; (3.16)
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that is, the probability of reject Ho when H1 is true.
Consider next another test with rejection region R̃ and significance level �.

We then have that

� =

∫
R̃

L(�o ∣ x1, x2, . . . , xn) dx1dx2 ⋅ ⋅ ⋅ dxn, (3.17)

and the power of the new test is


̃(�1) =

∫
R̃

L(�1 ∣ x1, x2, . . . , xn) dx1dx2 ⋅ ⋅ ⋅ dxn. (3.18)

The Neyman–Pearson Lemma states that


̃(�1) ⩽ 
(�1); (3.19)

in other words, out of all the tests of the simple hypothesis Ho : � = �o versus
H1 : � = �1, the LRT yields the largest possible power. Consequently, the
LRT gives the smallest probability of making a Type II error our of the tests of
significance level �.

The proof of the Neyman–Pearson Lemma is straight forward. First observe
that

R = (R ∩ R̃) ∪ (R ∩ R̃c), (3.20)

where R̃c denotes the complement of R̃. It then follows from (3.15) that

� =

∫
R∩R̃

L(�o ∣ x) dx +

∫
R∩R̃c

L(�o ∣ x) dx, (3.21)

where we have abbreviated the vector (x1, x2, . . . , xn) by x, and the volume
element dx1dx2 ⋅ ⋅ ⋅ dxn by dx. Similarly, using

R̃ = (R̃ ∩R) ∪ (R̃ ∩Rc), (3.22)

and (3.17) we get that

� =

∫
R̃∩R

L(�o ∣ x) dx +

∫
R̃∩Rc

L(�o ∣ x) dx. (3.23)

Combining (3.21) and (3.23) we then get that∫
R∩R̃c

L(�o ∣ x) dx =

∫
R̃∩Rc

L(�o ∣ x) dx. (3.24)

To prove (3.19), use (3.18) and (3.22) to get


̃(�1) =

∫
R̃∩R

L(�1 ∣ x) dx +

∫
R̃∩Rc

L(�1 ∣ x) dx (3.25)

Similarly, using (3.16) and (3.20), we get that


(�1) =

∫
R∩R̃

L(�1 ∣ x) dx +

∫
R∩R̃c

L(�1 ∣ x) dx. (3.26)
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Next, subtract (3.25) from (3.26) to get


(�1)− 
̃(�1) =

∫
R∩R̃c

L(�1 ∣ x) dx−
∫
R̃∩Rc

L(�1 ∣ x) dx, (3.27)

and observe that
cL(�1 ∣ x) ⩾ L(�o ∣ x) on R ∩ R̃c (3.28)

and
cL(�1 ∣ x) ⩽ L(�o ∣ x) on R̃ ∩Rc, (3.29)

where we have used (3.13) and (3.14). Multiplying the inequality in (3.29) by
−1 we get that

−cL(�1 ∣ x) ⩾ −L(�o ∣ x) on R̃ ∩Rc. (3.30)

It then follows from (3.27), (3.28) and (3.30)


(�1)− 
̃(�1) ⩾
1

c

(∫
R∩R̃c

L(�o ∣ x) dx−
∫
R̃∩Rc

L(�o ∣ x) dx

)
= 0 (3.31)

where we have used (3.24). The inequality in (3.19) now follows from (3.31).
Thus, we have proved the Neymann–Pearson Lemma.

The Neyman–Pearson Lemma applies only to tests of simple hypotheses.
For instance, in Example 3.4.6 of page 64 dealing with the test of Ho : p = po
versus H1 : p = p1, for p1 > po, based on a random sample X1, X2, . . . , Xn from
a Bernoulli(p) distribution for 0 < p < 1, we saw that the LRT rejects the null
hypothesis at some significance level, �, is

Y =

n∑
i=1

Xi ⩾ b, (3.32)

for some b > 0 determined by �. By the Neyman–Pearson Lemma, this is the
most powerful test at that significance level; that is, the test with the smallest
probability of a Type II error. Recall that the value of b yielding a significance
level � may be obtained, for large sample sizes, n, by applying the Central Limit
Theorem. In fact, assuming that the null hypothesis is true, the test statistic Y
in (3.32) is binomial(n, po). We then have that

� = P(Y ⩾ b)

= P

(
Y − npo√
npo(1− po)

⩾
b− npo√
npo(1− po)

)

≈ P

(
Z ⩾

b− npo√
npo(1− po)

)
,

where Z ∼ normal(0, 1). Thus, if z� is such that P(Z ⩾ z�) = �, then

b = npo + z�
√
npo(1− po) (3.33)
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in (3.32) gives the most powerful test at the significance level of �. Observe
that this value of b depends only on po and n; it does not depend on p1.

Now consider the test of Ho : p = po versus H1 : p > po. Since, the alterna-
tive hypothesis is not simple, we cannot apply the Neyman–Pearson Lemma di-
rectly. However, by the previous considerations, the test that rejects Ho : p = po
if

Y ⩾ b,

where b is given by (3.33) for large n is the most powerful test at level � for every
p1 > po; i.e., for every possible value in the alternative hypothesis H1 : p > po.
We then say that the LRT is the uniformly most powerful test (UMP) at
level � in this case.

Definition 3.5.1 (Uniformly most powerful test). A test of a simple hypothesis
Ho : � = �o against a composite alternative hypothesis H1 : � ∈ Ω1 is said to
be uniformly most powerful test (UMP) at a level �, if it is most powerful
at that level for every simple alternative � = �1 in Ω1.



Chapter 4

Evaluating Estimators

Given a random sample, X1, X2, . . . , Xn, from a distribution with distribution
function f(x ∣ �), we have seen that there might be more than one statistic,

T = T (X1, X2, . . . , Xn),

that can be used to estimate the parameter �. For example, if X1, X2, . . . , Xn is
a random sample from a normal(�, �2) distribution, then the sample variance,

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2,

and the maximum likelihood estimator,

�̂2 =
1

n

n∑
i=1

(Xi −Xn)2,

are both estimators for the variance �2. The sample variance, S2
n, is unbiased,

while the MLE is not.
As another example, consider a random sample, X1, X2, . . . , Xn, from a

Poisson distribution with parameter �. Then, the sample mean, Xn and the
then the sample variance, S2

n. are both unbiased estimators for �.
Given two estimators for a given parameter, �, is there a way to evaluate

the two estimators in such a way that we can tell which of the two is the better
one? In this chapter we explore one way to measure how good an estimator is,
the mean squared error or MSE. We will then see how to use that measure to
compare one estimator to others.

4.1 Mean Squared Error

Given a random sample, X1, X2, . . . , Xn, from a distribution with distribution
function f(x ∣ �), and an estimator, W = W (X1, X2, . . . , Xn), for the parameter

77
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�, we define the mean squared error (MSE) of W to be the expected value
of (W − �)2. We denote this expected value by E

�

[
(W − �)2

]
and compute it,

for the case in which f(x ∣ �) is a pdf, using the formula

E
�

[
(W − �)2

]
=

∫
ℝn

(W − �)2f(x1, x2, . . . , xn ∣ �) dx1dx2 ⋅ ⋅ ⋅ dxn,

where f(x1, x2, . . . , xn ∣ �) is the joint distribution of the sample. The subscript,
�, in the expectation symbol for expectation, E, reminds us that we are using
f(x1, x2, . . . , xn ∣ �). By the same token, the expectation of the W is written
E
�
(W ). We also write

MSE(W ) = E
�

[
(W − �)2

]
.

Observe that, since expectation is a linear operation,

MSE(W ) = E
�

[
((W − E

�
(W )) + (E

�
(W )− �))2

]
= E

�

[
((W − E

�
(W )))2 + 2(W − E

�
(W ))(E

�
(W )− �) + (E

�
(W )− �)2

]
= E

�

[
(W − E

�
(W ))2

]
+ E

�

[
(E

�
(W )− �)2

]
since

E
�

[2(W − E
�
(W ))(E

�
(W )− �)] = 2(E

�
(W )− �) E

�
[(W − E

�
(W )]

= 2(E
�
(W )− �) [E

�
(W )− E

�
(W )]

= 0.

We then have that

MSE(W ) = var
�
(W ) + [E

�
(W )− �]2;

that is, the mean square error of W is the sum of the variance of W and the
quantity [E

�
(W ) − �]2. The expression E

�
(W ) − � is called the bias of the

estimator W and is denoted by bias
�
(W ); that is,

bias
�
(W ) = E

�
(W )− �.

We then have that the mean square error of an estimator is

MSE(W ) = var
�
(W ) + [bias

�
(W )]2.

Thus, if the estimator, W , is unbiased, then E
�
(W ) = �, so that

MSE(W ) = var
�
(W ), for an unbiased estimator.
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Example 4.1.1. Let X1, X2, . . . , Xn be a random sample from a normal(�, �2)
distribution. Then, the sample mean, Xn, and the sample variance, S2

n, are
unbiased estimators of the � and �2, respectively. It then follows that

MSE(Xn) = var(Xn) =
�2

n

and

MSE(S2
n) = var(S2

n) =
2�4

n− 1
,

where we have used the fact that

n− 1

�2
S2
n ∼ �2(n− 1),

and therefore
(n− 1)2

�4
var(S2

n) = 2(n− 1).

Example 4.1.2 (Comparing the sample variance and the MLE in a sample
from a norma distribution). Let X1, X2, . . . , Xn be a random sample from a
normal(�, �2) distribution. The MLE for �2 is the estimator

�̂2 =
1

n

n∑
i=1

(Xi −Xn)2.

Since �̂2 =
n− 1

n
S2
n, and S2

n is an unbiased estimator for � it follows that

E(�̂2) =
n− 1

n
�2 = �2 − �2

n
.

It then follows that the bias of �̂2 is

bias(�̂2) = E(�̂2)− �2 = −�
2

n
,

which shows that, on average, �̂2 underestimates �2.
Next, we compute the variance of �̂2. In order to do this, we used the fact

that
n− 1

�2
S2
n ∼ �2(n− 1),

so that

var

(
n− 1

�2
S2
n

)
= 2(n− 1).

It then follows from �̂2 =
n− 1

n
S2
n that

n2

�4
var(�̂2) = 2(n− 1),
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so that

var(�̂2) =
2(n− 1)�4

n2
.

It the follows that the mean squared error of �̂2 is

MSE(�̂2) = var(�̂2) + bias(�̂2)

=
2(n− 1)�4

n2
+
�4

n2

=
2n− 1

n2
�4.

Comparing the value of MSE(�̂2) to

MSE(S2
n) =

2�4

n− 1
,

we see that
MSE(�̂2) < MSE(S2

n).

Hence, the MLE for �2 has a smaller mean squared error than the unbiased
estimator S2

n. Thus, �̂2 is a more precise estimator than S2
n; however, S2

n is
more accurate than �̂2.

4.2 Crámer–Rao Theorem

If W = W (X1, X2, . . . , Xn) is an unbiased estimator for �, where X1, X2, . . . , Xn

is a random sample from a distribution with distribution function f(x ∣ �), we
saw in the previous section that the mean squared error of W is given by

MSE(W ) = var
�
(W ).

The question we would like to answer in this section is the following: Out of all
unbiased estimators of � based on the random sample X1, X2, . . . , Xn, is there
one with the smallest possible variance, and consequently the smallest possible
MSE?

We will provide a partial answer to the question posed above. The answer
is based on a lower bound for the variance of a statistic, W , based on a random
sample from a distribution with distribution function f(x ∣ �). The lower bound
was discovered independently by Rao and Crámer around the middle of the
twentieth century. The idea is to show that

var
�
(W ) ⩾ b(�, n)

for all estimators, W , based on the sample, for a function b of the parameter
�. The Crámer–Rao inequality can be derived as a consequence of the Cauchy–
Schwarz inequality: For any statistics, W1 and W2, based on the sample,

[cov(W1,W2)]2 ⩽ var(W1) ⋅ var(W2). (4.1)
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The proof of (4.1) is very straightforward. Define a function ℎ : ℝ→ ℝ by

ℎ(t) = var(W1 + tW2) for all t ∈ ℝ,

and observe that ℎ(t) ⩾ 0 for all t ∈ ℝ. By the properties of the expectation
operator and the definition of variance,

ℎ(t) = E
[
(W1 + tW2)2

]
− [E(W1 + tW2)]

2

= E
[
W 2

1 + 2tW1W2 + t2W 2
2

]
− [E(W1) + tE(W2)]

2

= E
[
W 2

1

]
+ 2tE [W1W2] + t2E

[
W 2

2

]
− [E(W1)]

2 − 2tE(W1)E(W2)− t2 [E(W2)]
2

= var(W1) + 2 cov(W1,W2) t+ var(W2) t2,

where we have used the definition of covariance

cov(W1,W2) = E(W1W2)− E(W1)E(W2). (4.2)

It then follows that ℎ(t) is quadratic polynomial which is never negative. Con-
sequently, the discriminant,

[2 cov(W1,W2)]2 − 4 var(W2)var(W1),

is at most 0; that is,

4 [cov(W1,W2)]
2 − 4 var(W2)var(W1) ⩽ 0,

from which the Cauchy–Schwarz inequality in (4.1) follows.
To obtain the Crámmer–Rao lower bound, we will apply the Cauchy–Schwarz

inequality (4.1) to the case W1 = W and

W2 =
∂

∂�
[ln (L(� ∣ X1, X2, . . . , Xn))] .

In other words, W1 is the estimator in question and W2 is the partial deriva-
tive with respect to the parameter � of the natural logarithm of the likelihood
function.

In order to compute cov(W1,W2), we will need the expected value of W2.
Note that

W2 =
1

L(� ∣ X1, X2, . . . Xn)

∂

∂�
[L(� ∣ X1, X2, . . . , Xn)] ,

so that

E
�
(W2) =

∫
ℝn

1

L(� ∣ x)

∂

∂�
[L(� ∣ x)] L(� ∣ x) dx,

where we have denoted the vector (x1, x2, . . . , xn) by x and the volume element,
dx1dx2 ⋅ ⋅ ⋅ dxn, by dx. We then have that

E
�
(W2) =

∫
ℝn

∂

∂�
[L(� ∣ x)] dx.
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Assuming that the order of differentiation and integration can be changed, we
then have that

E
�
(W2) =

∂

∂�

[∫
ℝn
L(� ∣ (x)) dx

]
=

∂

∂�
(1) = 0,

so that W2 has expected value 0. It then follows from (4.2) that

cov(W1,W2) = E
�
(W1W2)

=

∫
ℝn
W (x)

1

L(� ∣ x)

∂

∂�
[L(� ∣ x)] L(� ∣ x) dx

=

∫
ℝn
W (x)

∂

∂�
[L(� ∣ x)] dx

=

∫
ℝn

∂

∂�
[W (x) L(� ∣ x)] dx.

Thus, if the order of differentiation and integration can be interchanged, we
have that

cov(W1,W2) =
∂

∂�

[∫
ℝn
W (x) L(� ∣ x) dx

]

=
∂

∂�
[E

�
(W )] .

Thus, if we set
g(�) = E

�
(W )

for all � in the parameter range, we see that

cov
�
(W1,W2) = g′(�).

In particular, if W is an unbiased estimator, cov
�
(W,W2) = 1, where

W2 =
∂

∂�
[ln (L(� ∣ X1, X2, . . . , Xn))] .

Applying the Cauchy–Schwarz inequality in (4.1) we then have that

[g′(�)]2 ⩽ var(W ) ⋅ var(W2). (4.3)

In order to compute var(W2), observe that

W2 =
∂

∂�

(
n∑
i=1

ln(f(Xi ∣ �)

)

=

n∑
i=1

∂

∂�
(ln(f(Xi ∣ �)) .
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Thus, since X1, X2, . . . , Xn are iid random variable with distribution function
f(x ∣ �),

var(W2) =

n∑
i=1

var

(
∂

∂�
(ln(f(Xi ∣ �))

)

= n ⋅ var

(
∂

∂�
(ln(f(Xi ∣ �))

)
The variance of the random variable

∂

∂�
[ln (f(X ∣ �))] is called the Fisher

Information and is denoted by I(�). We then have that

var(W2) = nI(�).

We then obtain from (4.3) that

[g′(�)]2 ⩽ nI(�) var(W ),

which yields the Crámer-Rao lower bound

var(W ) ⩾
[g′(�)]2

nI(�)
, (4.4)

where

I(�) = var

(
∂

∂�
[ln (f(X ∣ �))]

)
is the Fisher information. For the case in which W is unbiased we obtain from
(4.4) that

var(W ) ⩾
1

nI(�)
. (4.5)

Example 4.2.1. Let X1, X2, . . . , Xn be a random sample from a Poisson(�)
distribution. Then,

f(X,�) =
�X

X!
e−�,

so that
ln(f(X,�)) = X ln�− �− ln(X!)

and
∂

∂�
[ln(f(X,�))] =

X

�
− 1.

Then the Fisher information is

I(�) =
1

�2
var(X) =

1

�2
⋅ � =

1

�
.

Thus, the Crámer–Rao lower bound for unbiased estimators is obtained from
(4.5) to be

1

nI(�)
=
�

n
.



84 CHAPTER 4. EVALUATING ESTIMATORS

Observe that if W = Xn, the sample mean, then W is unbiased and

var(W ) =
�

n
.

Thus, in this case, the lower bound for the variance of unbiased estimators is
attained at the sample mean. We say that Xn is an efficient estimator.

Definition 4.2.2 (Efficient Estimator). An unbiased estimator, W , of a pa-
rameter, �, is said to be efficient if its variance is the lower bound in the
Crámer–Rao inequality; that is, if

var(W ) =
1

nI(�)
,

where I(�) is the Fisher information,

I(�) = var

(
∂

∂�
(ln(f(X ∣ �))

)
.

For any unbiased estimator, W , of �, we define the efficiency of W , denoted
eff

�
(W ), to be

eff
�
(W ) =

1/(nI(�))

var
�
(W )

.

Thus, by the Crámer–Rao inequality (4.5),

eff
�
(W ) ⩽ 1

for all unbiased estimators, W , of �. Furthermore, eff
�
(W ) = 1 if and only if W

is efficient.

Next, we turn to the question of computing the Fisher information, I(�).
First, observe that

I(�) = var

(
∂

∂�
(ln(f(X ∣ �))

)
= E

�

[(
∂

∂�
(ln(f(X ∣ �))

)2
]
, (4.6)

since

E
�

[
∂

∂�
(ln(f(X ∣ �))

]
= 0. (4.7)

To see why (4.7) is true, observe that

E
�

[
∂

∂�
(ln(f(X ∣ �))

]
=

∫ ∞
−∞

∂

∂�
(ln(f(x ∣ �)) f(x ∣ �) dx

=

∫ ∞
−∞

1

f(x ∣ �)
∂

∂�
(f(x ∣ �)) f(x ∣ �) dx

=

∫ ∞
−∞

∂

∂�
(f(x ∣ �)) dx

=
∂

∂�

(∫ ∞
−∞

f(x ∣ �) dx

)
,
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assuming that the order of differentiation and integration can be interchanged.
The identity in (4.7) now follows from the fact that∫ ∞

−∞
f(x ∣ �) dx = 1.

Next, differentiate (4.7) with respect to � one more time to obtain that

∂

∂�
E
�

[
∂

∂�
(ln(f(X ∣ �))

]
= 0, (4.8)

where, assuming that the order of differentiation and integration can be inter-
changed,

∂

∂�
E
�

[
∂

∂�
(ln(f(x ∣ �))

]
=

∂

∂�

[∫ ∞
−∞

∂

∂�
(ln(f(x ∣ �)) f(x ∣ �) dx

]

=

∫ ∞
−∞

∂2

∂�2
(ln(f(x ∣ �)) f(x ∣ �) dx

+

∫ ∞
−∞

∂

∂�
(ln(f(x ∣ �)) ∂

∂�
f(x ∣ �) dx

= E
�

[
∂2

∂�2
(ln(f(x ∣ �)))

]

+

∫ ∞
−∞

1

f(x ∣ �)

[
∂

∂�
f(x ∣ �)

]2

dx,

where∫ ∞
−∞

1

f(x ∣ �)

[
∂

∂�
f(x ∣ �)

]2

dx =

∫ ∞
−∞

[
1

f(x ∣ �)
∂

∂�
f(x ∣ �)

]2

f(x ∣ �) dx

=

∫ ∞
−∞

[
∂

∂�
ln(f(x ∣ �))

]2

f(x ∣ �) dx

= E
�

[(
∂

∂�
ln(f(x ∣ �))

)2
]
.

It then follows from (4.6) that∫ ∞
−∞

1

f(x ∣ �)

[
∂

∂�
f(x ∣ �)

]2

dx = I(�).

Consequently,

∂

∂�
E
�

[
∂

∂�
(ln(f(x ∣ �))

]
= E

�

[
∂2

∂�2
(ln(f(x ∣ �)))

]
+ I(�)
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In view of (4.7) we therefore have that

I(�) = −E
�

[
∂2

∂�2
(ln(f(x ∣ �)))

]
, (4.9)

which gives another formula for computing the Fisher information.



Appendix A

Pearson Chi–Square
Statistic

The goal of this appendix is to prove the first part of Theorem 3.1.4 on page
49; namely: assume that

(X1, X2, . . . , Xk)

is a random vector with a multinomial(n, p1, p2, . . . , pk) distribution, and define

Q =

k∑
i=1

(Xi − npi)2

npi
. (A.1)

Then, for large values of n, Q has an approximate �2(k − 1) distribution. The
idea for the proof presented here comes from Exercise 3 on page 60 in [Fer02].

We saw is Section 3.1.2 that the result in Theorem 3.1.4 is true for k = 2.
We begin the discussion in this appendix with the case k = 3. It is hoped that
the main features of the proof of the general case will be seen in this simple
case.

Consider the random vector U = (U1, U2, U3) with a multinomial(1, p1, p2, p3)
distribution. In other words, each component function, Ui, is a Bernoulli(pi)
random variable for i = 1, 2, 3, and the distribution of U is conditioned on

U1 + U2 + U3 = 1.

We then have that
E(Uj) = pj for j = 1, 2, 3;

var(Uj) = pj(1− pj) for j = 1, 2, 3;

and
cov(Ui, Uj) = −pipj for i ∕= j.

Suppose now that we have a sequence of independent multinomial(1, p1, p2, p3)
random vectors

U1,U2, . . . ,Un, . . .

87
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We then have that the random vector

Xn = (X1, X2, X3) =

n∑
i=1

Ui

has a multinomial(n, p1, p2, p3) distribution.
We now try to get an expression for the Pearson chi–square statistic in (A.1),

for k = 3, in terms of the bivariate random vector

Wn =

(
X1

X2

)
.

The expected value of the random vector Wn is

E(Wn) =

(
np1

np2

)
,

and its covariance matrix is

CWn
= n

(
p1(1− p1) −p1p2

−p1p2 p2(1− p2)

)
,

or

CW = nC(U1,U2),

where C(U1,U2) is the covariance matrix for the bivariate random vector

(
U1

U2

)
,

for (U1, U2, U3) ∼ multinomial(1, p1, p2, p3). Note that the determinant of the
matrix C(U1,U2) is p1p2p3, which is different from 0 since we are assuming that

0 < pi < 1 for i = 1, 2, 3.

It then follows that C(U1,U2) is invertible with inverse

C−1
(U1,U2) =

⎛⎜⎜⎜⎝
1

p1
+

1

p3

1

p3

1

p3

1

p2
+

1

p3

⎞⎟⎟⎟⎠ .

Consequently,

n C−1
Wn

=

⎛⎜⎜⎜⎝
1

p1
+

1

p3

1

p3

1

p3

1

p2
+

1

p3

⎞⎟⎟⎟⎠ .

Note also that

(Wn − E(Wn))TC−1
Wn

(Wn − E(Wn)),
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where (Wn −E(Wn))T is the transpose of the column vector (Wn −E(Wn)),
is equal to

n−1(X1 − np1, X2 − np2)

⎛⎜⎜⎜⎝
1

p1
+

1

p3

1

p3

1

p3

1

p2
+

1

p3

⎞⎟⎟⎟⎠ .

⎛⎝X1 − np1

X2 − np2

⎞⎠ ,

which is equal to

n−1

(
1

p1
+

1

p3

)
(X1 − np1)2

+
n−1

p3
(X1 − np1)(X2 − np2) +

n−1

p3
(X2 − np2)(X1 − np1)

n−1

(
1

p2
+

1

p3

)
(X2 − np2)2.

Note that

(X1 − np1)(X2 − np2) = (X1 − np1)(n−X1 −X3 − np2)

= (X1 − np1)(n(1− p2)−X1 −X3)

= (X1 − np1)(n(p1 + p3)−X1 −X3)

= −(X1 − np1)(X1 − np1 +X3 − np3)

= −(X1 − np1)2 − (X1 − np1)(X3 − np3).

Similarly, we obtain that

(X2 − np2)(X1 − np1) = −(X2 − np2)2 − (X2 − np2)(X3 − np3).

We then have that

(Wn − E(Wn))TC−1
Wn

(Wn − E(Wn))

is equal to

n−1

(
1

p1
+

1

p3
− 1

p3

)
(X1 − np1)2

−n
−1

p3
(X1 − np1)(X3 − np3)− n−1

p3
(X2 − np2)(X3 − np3)

n−1

(
1

p2
+

1

p3
− 1

p3

)
(X2 − np2)2,
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or
1

np1
(X1 − np1)2

− 1

np3
(X3 − np3)[(X1 − np1) + (X2 − np2)]

1

np2
(X2 − np2)2,

where

(X3 − np3)[(X1 − np1) + (X2 − np2)] = (X3 − np3)[X1 +X2 − n(p1 + p2)]

= (X3 − np3)[n−X3 − n(1− p3)]

= −(X3 − np3)2.

We have therefore shown that

(Wn − E(Wn))TC−1
Wn

(Wn − E(Wn))

is equal to

1

np1
(X1 − np1)2 +

1

np3
(X3 − np3)2 +

1

np2
(X2 − np2)2;

that is,

(Wn − E(Wn))TC−1
Wn

(Wn − E(Wn)) =

3∑
j=1

(Xj − npj)2

npj
,

which is the Pearson Chi–Square statistic for the case k = 3. Consequently,

Q = (Wn − E(Wn))TC−1
Wn

(Wn − E(Wn)).

Our goal now is to show that, as n→∞,

(Wn − E(Wn))TC−1
Wn

(Wn − E(Wn))

tends in distribution to a �2(2) random variable.
Observe that the matrix C−1

Wn
is symmetric and positive definite. There-

fore, it has a square root, C
−1/2
Wn

, which is also symmetric and positive definite.
Consequently,

Q = (Wn − E(Wn))T
(
C
−1/2
Wn

)T
C
−1/2
Wn

(Wn − E(Wn)),

which we can write as

Q = (C
−1/2
Wn

(Wn − E(Wn)))TC
−1/2
Wn

(Wn − E(Wn)).
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Next, put

Zn = C
−1/2
Wn

(Wn − E(Wn))

and apply the multivariate central limit theorem (see, for instance, [Fer02, The-
orem 5, p. 26]) to obtain that

Zn
D−→ Z ∼ normal(0, I) as n→∞;

that is, the bivariate random vectors, Zn = C
−1/2
Wn

(Wn −E(Wn)), converge in

distribution to the bivariate random vector Z with mean

(
0
0

)
and covariance

matrix

I =

(
1 0
0 1

)
.

In other words

Z =

(
Z1

Z2

)
,

where Z1 and Z2 are independent normal(0, 1) random variables. Consequently,

(C
−1/2
Wn

(Wn − E(Wn))TC
−1/2
Wn

(Wn − E(Wn))
D−→ ZTZ = Z2

1 + Z2
2

as n→∞; that is,

Q =

3∑
i=1

(Xi − npi)2

npi

converges in distribution to a �2(2) random variable as n→∞, which we wanted
to prove.

The proof of the general case is analogous. Begin with the multivariate
random vector

(X1, X2, . . . , Xk) ∼ multinomial(n, p1, p2, . . . , pk).

Define the random vector

Wn =

⎛⎜⎜⎜⎝
X1

X2

...
Xk−1

⎞⎟⎟⎟⎠
with covariance matrix CWn

. Verify that

Q =

k∑
j=1

(Xj − npj)2

npj
= (C

−1/2
Wn

(Wn − E(Wn)))TC
−1/2
Wn

(Wn − E(Wn)).

Next, put

Zn = C
−1/2
Wn

(Wn − E(Wn))
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and apply the multivariate central limit theorem to obtain that

Zn
D−→ Z ∼ normal(0, I) as n→∞,

where I is the (k − 1)× (k − 1) identity matrix, so that

Z =

⎛⎜⎜⎜⎝
Z1

Z2

...
Zk−1

⎞⎟⎟⎟⎠ ,

where Z1, Z2, . . . , Zk−1 are independent normal(0, 1) random variables. Conse-
quently,

(C
−1/2
Wn

(Wn − E(Wn))TC
−1/2
Wn

(Wn − E(Wn))
D−→ ZTZ =

k−1∑
j=1

Z2
j ∼ �2(k − 1)

as n→∞. This proves that

Q =

k∑
i=1

(Xi − npi)2

npi

converges in distribution to a �2(k − 1) random variable as n→∞.



Appendix B

The Variance of the Sample
Variance

The main goal of this appendix is to compute the variance of the sample variance
based on a sample from and arbitrary distribution; i.e.,

var(S2
n),

where

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2.

We will come up with a formula based on the second and fourth central
moments of the underlying distribution. More precisely, we will prove that

var(S2
n) =

1

n

(
�4 −

n− 3

n− 1
�2

2

)
, (B.1)

where �2 denotes the second central moment, or variance, of the distribution
and �4 is the fourth central moment.

In general, we define the first central moment, �1, of the distribution of X
to be

�1 = E(X),

the mean on the distribution. The second central moment of X, �2, is

�2 = E
[
(X − E(X))2

]
;

in other words, �2 is the variance of the distribution. Similarly, for any k ⩾ 2,
the kth central moment, �k, of X is

�k = E
[
(X − E(X))k

]
.
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First observe that, for each i and j

(Xi −Xj)
2 = (Xi −Xn +Xn −Xj)

2

= (Xi −Xn)2 − 2(Xi −Xn)(Xn −Xj) + (Xn −Xj)
2,

so that∑
i

∑
j

(Xi −Xj)
2 =

∑
i

∑
j

(Xi −Xn)2 +
∑
i

∑
j

(Xj −Xn)2, (B.2)

since ∑
i

∑
j

(Xi −Xn)(Xn −Xj) =
∑
i

(Xi −Xn)
∑
j

(Xn −Xj) = 0.

It then follows from (B.2) that∑
i

∑
j

(Xi −Xj)
2 = n

∑
i

(Xi −Xn)2 + n
∑
j

(Xj −Xn)2

= n(n− 1)S2
n + n(n− 1)S2

n

from which we obtain another formula for the sample variance:

S2
n =

1

2n(n− 1)

∑
i

∑
j

(Xi −Xj)
2,

which we can also write as

S2
n =

1

n(n− 1)

∑∑
i<j

(Xi −Xj)
2. (B.3)

In order to compute var(S2
n) we will need to compute the expectation of

(S2
n)2, where, according to the formula in (B.3),

(S2
n)2 =

1

n2(n− 1)2

∑∑
i<j

∑∑
k<ℓ

(Xi −Xj)
2(Xk −Xℓ)

2.

It then follows by the linearity of the expectation operator that

E
[
(S2
n)2
]

=
1

n2(n− 1)2

∑∑
i<j

∑∑
k<ℓ

E
[
(Xi −Xj)

2(Xk −Xℓ)
2
]
. (B.4)

We will then to compute the expectations E
[
(Xi −Xj)

2(Xk −Xℓ)
2
]

for all
possible values of i, j, k, ℓ ranging from 1 to n such that i < j and k < ℓ. There

are

[
n(n− 1)

2

]2

of those terms contributing to the expectation of (S2
n)2 in

(B.4). Out of those terms,
n(n− 1)

2
, or

(
n

2

)
, are of the form

E
[
(Xi −Xj)

4
]
, (B.5)
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where i < j. We compute the expectations in (B.5) as follows

E
[
(Xi −Xj)

4
]

= E
[
(Xi − �1 + �1 −Xj)

4
]

= E
[
(Xi − �1)4 + 4(Xi − �1)3(�1 −Xj)
+6(Xi − �1)2(�1 −Xj)

2

+4(Xi − �1)(�1 −Xj)
3 + (�1 −Xj)

4
]

= �4 + 6�2 ⋅ �2 + �4,

where we have used the independence of the Xis and the definition of the central
moments. We then have that

E
[
(Xi −Xj)

4
]

= 2�4 + 6�2
2, for i ∕= j. (B.6)

For the rest for the expectations, E
[
(Xi −Xj)

2(Xk −Xℓ)
2
]
, in (B.4) there are

two possibilities

(i) i ∕= k and j ∕= ℓ, or

(ii) either i = k, or j = ℓ, but not both simultaneously.

In case (i) we obtain, by the independence of the Xis and the definition of
the central moments, that

E
[
(Xi −Xj)

2(Xk −Xℓ)
2
]

= E
[
(Xi −Xj)

2
]
⋅ E
[
(Xk −Xℓ)

2
]
, (B.7)

where
E
[
(Xi −Xj)

2
]

= E
[
(Xi − �1 + �1 −Xj)

2
]

= E
[
(Xi − �1)2

]
+ E

[
(Xj − �1)2

]
since

E [(Xi − �1)(�1 −Xj)] = E(Xi − �1) ⋅ E(�1 −Xj) = 0.

Consequently,
E
[
(Xi −Xj)

2
]

= 2�2.

Similarly,
E
[
(Xk −Xℓ)

2
]

= 2�2.

We then have from (B.7) that

E
[
(Xi −Xj)

2(Xk −Xℓ)
2
]

= 4�2
2, for i ∕= j ∕= k ∕= ℓ. (B.8)

There are

4!

(
n

4

)
of making the choices for i ∕= j ∕= k ∕= ℓ. Since we are only interested in those
choices with i < j and k < ℓ we get a total of

6

(
n

4

)



96 APPENDIX B. THE VARIANCE OF THE SAMPLE VARIANCE

choices in case (i). Consequently the number of choices in case (ii) is(
n

2

)2

−
(
n

2

)
− 6

(
n

4

)
.

One of the expectations in case (ii) is of the form

E
[
(Xi −Xj)

2(Xi −Xℓ)
2
]
,

where j ∕= ℓ. In this case we have

E
[
(Xi −Xj)

2(Xi −Xℓ)
2
]

= E
[
(Xi − �1 + �1 −Xj)

2(Xi − �1 + �1 −Xℓ)
2
]

= E
[(

(Xi − �1)2 + 2(Xi − �1)(�1 −Xj) + (�1 −Xj)
2
)(

(Xi − �1)2 + 2(Xi − �1)(�1 −Xℓ) + (�1 −Xℓ)
2
)]

= E
[
(Xi − �1)4 + 2(Xi − �1)3(�1 −Xℓ)
+(Xi − �1)2(Xℓ − �1)2 + 2(Xi − �1)3(�1 −Xj)

+4(Xi − �1)2(�1 −Xj)(�1 −Xℓ)
+2(Xi − �1)(�1 −Xj)(Xℓ − �1)2

+(Xi − �1)2(Xj − �1)2

+2(Xi − �1)(Xj − �1)2(�1 −Xℓ)
+(Xj − �1)2(Xℓ − �1)2

]
.

Next, use the linearity of the expectation operator, the independence of Xi, Xj

and Xℓ, and the definition of the central moments to get

E
[
(Xi −Xj)

2(Xi −Xℓ)
2
]

= �4 + �2 ⋅ �2 + �2 ⋅ �2 + �2 ⋅ �2

= �4 + 3�2
2.

We obtain the same value for all the other expectations in case (ii); i.e.,

E
[
(Xi −Xj)

2(Xi −Xℓ)
2
]

= �4 + 3�2
2, for i ∕= j ∕= ℓ. (B.9)

It follows from (B.4) and the values of the possible expectations, E
[
(Xi −Xj)

2(Xk −Xℓ)
2
]
,

we have computed in equations (B.6), (B.8) and (B.9), that

E
[
n2(n− 1)2(S2

n)2
]

=
∑∑
i<j

∑∑
k<ℓ

E
[
(Xi −Xj)

2(Xk −Xℓ)
2
]

=

(
n

2

)
(2�4 + 6�2

2) + 6

(
n

4

)
(4�2

2)

+

((
n

2

)2

−
(
n

2

)
− 6

(
n

4

))
(�4 + 3�2

2).

Noting that

(
n

2

)
=
n(n− 1)

2
, the above expression simplifies to

E
[
n2(n− 1)2(S2

n)2
]

= n(n− 1)(�4 + 3�2
2) + n(n− 1)(n− 2)(n− 3)�2

2

+n(n− 1)(n− 2)(�4 + 3�2
2).
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Thus, dividing by n(n−1) on both sides of the previous equation we then obtain
that

E
[
n(n− 1)(S2

n)2
]

= �4 + 3�2
2 + (n− 2)(n− 3)�2

2 + (n− 2)(�4 + 3�2
2)

= (n− 1)�4 + (n2 − 2n+ 3)�2
2.

Dividing by n− 1 we then have that

nE
[
(S2
n)2
]

= �4 +
n2 − 2n+ 3

n− 1
�2

2,

from which we obtain that

E
[
(S2
n)2
]

=
1

n

(
�4 +

n2 − 2n+ 3

n− 1
�2

2

)
.

Thus,

var(S2
n) = E

[
(S2
n)2
]
−
[
E(S2

n)
]2

=
1

n

(
�4 +

n2 − 2n+ 3

n− 1
�2

2

)
− (�2)2,

since S2
n is an unbiased estimator of �2. Simplifying we then obtain that

var(S2
n) =

1

n
�4 +

3− n
n(n− 1)

�2
2,

which yields the equation in (B.1).
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