Department of Mathematics

Pomona College

 

Math 151.  Probability           Fall 2016

 

Course Outline

 

Time and Place:         TR  8:10 am – 9:25 am                Millikan 1021

 

Instructor:                  Dr. Adolfo J. Rumbos

 

Office:                        Andrew 2287

 

Phone/e-mail:             ext.  18713 / arumbos@pomona.edu

 

Office Hours:             MWF   10:05 am-10:50 am, TR 10:00 am – 11:00am,

or by appointment

 

Text:                           Probability and Statistics,

by Morris H. DeGroot and Mark J. Schervish,  Adison Wesley

 

Course Website:        http://pages.pomona.edu/~ajr04747/

 

Prerequisites:             Multivariable Calculus or Vector Calculus, and Linear Algebra.

 

 

Course Description.    This course is an introduction to the theory and applications of Probability; special attention will be given to applications relevant to statistical inference.  A solid knowledge of multivariable calculus and linear algebra will be assumed.  The course topics are listed in the attached tentative schedule of lectures and examinations.

 

Assigned Readings and Problems.   Readings and problem sets will be assigned and collected on weekly basis.  Students are strongly encouraged to work on every assigned problem.  Late homework assignments will not be graded.

 

 

Grading Policy.   Grades will be based on the homework, three 50-minute examinations, plus a comprehensive final examination.  The overall score will be computed as follows:

 

                        homework                                                      20%

                        three 50-minute exams                                    50%

                        final examination                                            30%

 

 

Final Examination.

Time:   Monday, December 12, 2016        7:00 pm – 9:00 pm.

Place:   Millikan 1021

Math 151.  Probability                                                                                  Fall 2016

Tentative Schedule of Lectures and Examinations

Date                            Topic

T          Aug. 30           Introduction:  A problem from statistical inference

R         Sep.    1           Sample Spaces and σ-fields

 

T          Sep.   6            Probability function

R         Sep.   8            Independent events

 

T          Sep. 13            Conditional probability

R         Sep. 15            Continuous and discrete random variables    

 

T          Sep. 20            Cumulative distribution function (cdf)

R         Sep. 22            Probability mass function (pmf) and probability density function (pdf)

 

T          Sep. 27            Review

R         Sep. 29            Exam 1          

 

T          Oct.   4                        Expectation of a random variable

R         Oct.   6                        Expectation of a function of a random variable

 

T          Oct. 11                        Moments, variance and moment generation function

R         Oct. 13                        Joint distribution functions    

 

T          Oct. 18                        Fall Recess

R         Oct. 20                        Marginal distributions and independent random variables    

 

T          Oct. 25                        Independent random variables (continued)

R         Oct. 27                        The Poisson Distribution        

 

T          Nov.   1           Review

R         Nov.   3           Exam 2

 

T          Nov.   8           Limiting distributions  and the mgf convergence theorem

R         Nov. 10           Convergence in distribution and convergence in Probability

 

T          Nov. 15           The Central Limit Theorem

R         Nov. 17           Applications of the Central Limit Theorem

 

T          Nov. 22           Random samples and Sampling distributions

R         Nov. 24           Thanksgiving Recess  

 

T          Nov. 29           Review

R         Dec.  1             Exam 3                      

 

T          Dec.  6             Review