Assignment \#2

Due on Friday, September 20, 2019
Read Chapter 3, on Indirect Methods, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

- Continuity. A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be continuous at $x_{o} \in[a, b]$ if for any $\varepsilon>0$, there exists $\delta>0$ (which depends on ε and x_{o}) such that $\left|f(x)-f\left(x_{o}\right)\right|<\varepsilon$ for all $x \in[a, b]$ with $\left|x-x_{o}\right|<\delta$.
- The Class $C([a, b], \mathbb{R})$. If f is continuous at every point in $[a, b]$, we say that f is continuous on $[a, b]$ and write $f \in C([a, b], \mathbb{R})$.
- The Class $C_{o}([a, b], \mathbb{R})$. If f is continuous at every point in $[a, b]$ and $f(a)=0$ and $f(b)=0$, we write $f \in C_{o}([a, b], \mathbb{R})$.
- The Class $C^{1}([a, b], \mathbb{R})$. If f is differentiable in an open interval that contains $[a, b]$, and f^{\prime} is continuous on $[a, b]$, we write $f \in C^{1}([a, b], \mathbb{R})$.
- The Class $C_{o}^{1}([a, b], \mathbb{R})$. If $f \in C^{1}([a, b], \mathbb{R})$ and $f(a)=f(b)=0$, we write $f \in C_{o}^{1}([a, b], \mathbb{R})$.

Do the following problems

1. Prove that if $f \in C([a, b], \mathbb{R})$ and $f\left(x_{o}\right) \neq 0$ for some $x_{o} \in(a, b)$, then there exists an interval $\left(x_{o}-\delta, x_{o}+\delta\right)$ contained in (a, b) such that $f(x) \neq 0$ for all $x \in\left(x_{o}-\delta, x_{o}+\delta\right)$.
2. Assume that $f \in C([a, b], \mathbb{R})$ and that $f(x) \geqslant 0$ for all $x \in[a, b]$. Prove that, if

$$
\int_{a}^{b} f(x) d x=0
$$

then $f(x)=0$ for all $x \in[a, b]$.
3. Assume that $f \in C([a, b], \mathbb{R})$. Suppose that

$$
\int_{c}^{d} f(x) d x=0
$$

for all c and d such that $a \leqslant c<d \leqslant b$. Show that $f(x)=0$ for all $x \in[a, b]$.
4. The Fundamental Lemma in the Calculus of Variations. Let $f \in$ $C([a, b], \mathbb{R})$ and suppose that

$$
\int_{a}^{b} f(x) \eta(x) d x=0, \quad \text { for all } \eta \in C_{o}([a, b], \mathbb{R})
$$

Show that $f(x)=0$ for all $x \in[a, b]$.
5. The Second Fundamental Lemma in the Calculus of Variations. In this problem we prove the second fundamental lemma in the Calculus of Variations: Let $f \in C([a, b], \mathbb{R})$ and suppose that

$$
\int_{a}^{b} f(x) \eta^{\prime}(x) d x=0, \quad \text { for all } \eta \in C_{o}^{1}([a, b], \mathbb{R})
$$

Then, f must be constant on $[a, b]$.
(a) Put

$$
c=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and define $\eta:[a, b] \rightarrow \mathbb{R}$ by

$$
\eta(x)=\int_{a}^{x}(f(t)-c) d t, \quad \text { for } x \in[a, b] \text {. }
$$

Verify that $\eta \in C_{o}^{1}([a, b], \mathbb{R})$.
(b) Show that

$$
\int_{a}^{b}(f(x)-c)^{2} \mathrm{~d} x=0
$$

(c) Deduce that $f(x)=c$ for all $x \in[a, b]$.

