Assignment \#3

Due on Friday, September 27, 2019
Read Chapter 3, on Indirect Methods, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let $\mathcal{A}=\left\{y \in C^{1}([0,1], \mathbb{R}) \mid y(0)=0\right.$ and $\left.y(1)=1\right\}$. Define $J: \mathcal{A} \rightarrow \mathbb{R}$ by

$$
J(y)=\int_{0}^{1}\left[2 e^{x} y(x)+\left(y^{\prime}(x)\right)^{2}\right] \mathrm{d} x \quad \text { for all } y \in \mathcal{A}
$$

Give the Euler-Lagrange equation associated with J and, if possible, solve it subject to the boundary conditions in \mathcal{A}.
2. Let $J: \mathcal{A} \rightarrow \mathbb{R}$ be defined by $J(y)=\int_{1}^{2}\left[2(y(x))^{2}+x^{2}\left(y^{\prime}(x)\right)^{2}\right] \mathrm{d} x$ for all $y \in \mathcal{A}$, where $\mathcal{A}=\left\{y \in C^{1}([1,2], \mathbb{R}) \mid y(1)=1\right.$ and $\left.y(2)=5\right\}$. Give the EulerLagrange equation associated with J and, if possible, solve it subject to the boundary conditions in \mathcal{A}.

Suggestion: Look for solutions of the differential equation of the form $y(x)=x^{m}$, for $x \in[1,2]$, where m needs to be determined so that y solves the EulerLagrange equation.
3. Let $J: \mathcal{A} \rightarrow \mathbb{R}$ be defined by $J(y)=\int_{5}^{10} \sqrt{x} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} \mathrm{~d} x$ for all $y \in \mathcal{A}$, where $\mathcal{A}=\left\{y \in C^{1}([5,10], \mathbb{R}) \mid y(5)=4\right.$ and $\left.y(10)=6\right\}$. Give the EulerLagrange equation associated with J and, if possible, solve it subject to the boundary conditions in \mathcal{A}.
4. The Brachistochrone Problem. The Euler-Lagrange equation associated with the functional defined in the discussion of the Brachistochrone problem in class, and in the lecture notes, can be written in the form

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}} \sqrt{u}}\right]=-\frac{\sqrt{1+\left(u^{\prime}\right)^{2}}}{2 u^{3 / 2}}, \quad \text { for } 0<x<x_{1} \tag{1}
\end{equation*}
$$

Evaluate the derivative on the left-hand side of the equation in (1) and simplify to obtain from (1) that

$$
\begin{equation*}
\left(u^{\prime}\right)^{2}+2 u u^{\prime \prime}+1=0 \quad \text { for } 0<x<x_{1}, \tag{2}
\end{equation*}
$$

where $u^{\prime \prime}$ denotes the second derivative of u.
5. The Brachistochrone Problem, Continued. Multiply on both sides of (2) by u^{\prime} to get

$$
\begin{equation*}
\left(u^{\prime}\right)^{3}+2 u u^{\prime} u^{\prime \prime}+u^{\prime}=0 \quad \text { for } 0<x<x_{1} . \tag{3}
\end{equation*}
$$

(a) Show that the differential equation in (3) can be written as

$$
\begin{equation*}
\frac{d}{d x}\left[u+u\left(u^{\prime}\right)^{2}\right]=0 . \tag{4}
\end{equation*}
$$

(b) Integrate the equation in (4) to obtain a first-order differential equation for u.

