Assignment \#4

Due on Friday, October 4, 2019
Read Section 4.1, Gâteaux Differentiability, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Gâteaux Differentiability. Let V denote a normed linear space, and V_{o} a nontrivial subspace of V. Let $J: V \rightarrow \mathbb{R}$ be a functional defined on V. We say that J is Gâteaux differentiable at $u \in V$ in the direction of $v \in V_{o}$ if

$$
\left.\frac{d}{d t} J(u+t v)\right|_{t=0}=\lim _{t \rightarrow 0} \frac{J(u+t v)-J(u)}{t} \text { exists. }
$$

If the limit exists, we denote it by $d J(u ; v)$, and call it the Gâteaux derivative of J at u in the direction of v, or the first variation of J at u in the direction of v.

Do the following problems

1. Let $V=C^{1}([a, b], \mathbb{R})$ and $V_{o}=C_{o}^{1}([a, b], \mathbb{R})$. Define

$$
J(y)=\frac{1}{2} \int_{a}^{b}\left(y^{\prime}(x)\right)^{2} d x, \quad \text { for all } y \in C^{1}([a, b], \mathbb{R})
$$

Show that $J: V \rightarrow \mathbb{R}$ is Gâteaux differentiable at every $y \in V$ in the direction of $v \in V_{o}$, and compute $d J(y ; v)$ for all $y \in V$ and $v \in V_{o}$.
2. Let $G: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function and $J: C^{1}([a, b], \mathbb{R}) \rightarrow \mathbb{R}$ be the functional given by

$$
J(y)=\int_{a}^{b} x^{2}\left(y^{\prime}(x)\right)^{3} \mathrm{~d} x+G(y(b)) \quad \text { for all } y \in C^{1}([a, b], \mathbb{R})
$$

Show that J is Gâteaux differentiable at every $y \in C^{1}([a, b], \mathbb{R})$ in the direction of $\eta \in C_{o}^{1}([a, b], \mathbb{R})$ and compute $d J(y ; \eta)$ for all $y \in C^{1}([a, b], \mathbb{R})$ and $\eta \in$ $C_{o}^{1}([a, b], \mathbb{R})$.
3. Let V be a normed linear space and $L: V \rightarrow \mathbb{R}$ be a linear function. Prove that L is Gâteaux differentiable in V in the direction of any $v \in V$ and compute $d L(u, ; v)$ for any $u \in V$ and $v \in V$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a C^{1} real valued function of a single variable, and define $J: C^{1}([a, b], \mathbb{R}) \rightarrow \mathbb{R}$ by $J(y)=\int_{a}^{b} f\left(y^{\prime}(x)\right) \mathrm{d} x$ for all $y \in C^{1}([a, b], \mathbb{R})$. Show that J is Gâteaux differentiable at every $y \in C^{1}([a, b], \mathbb{R})$ in the direction of every $\eta \in C_{o}^{1}([a, b], \mathbb{R})$, and compute the Gâteaux derivative of J at every $y \in C^{1}([a, b], \mathbb{R})$ in the direction of every $\eta \in C_{o}^{1}([a, b], \mathbb{R})$.
5. Let V denote a normed linear space and V_{o} a non-trivial subspace of V. Assume that $J: V \rightarrow \mathbb{R}$ is Gâteaux differentiable at every $u \in V$ in the direction of every $v \in V_{o}$. Suppose that J has a local minimum at $u \in V$; so that,

$$
J(u) \leqslant J(w), \quad \text { for all } w \in V \text { with }\|w-u\|<\delta
$$

and some $\delta>0$. Show that

$$
d J(u ; v)=0, \quad \text { for all } v \in V_{o}
$$

