Assignment #6

Due on Friday, October 25, 2019

Read Chapter 5, Optimization Problems with Constraints, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Weak Continuity.

Let V denote a normed linear space with norm $\|\cdot\|$ and V_o a nontrivial subspace of V. Let $J: V \to \mathbb{R}$ be Gâteaux differentiable at every $u \in V$ in the direction of every $v \in V_o$. We say that the Gâteaux derivative of J, dJ(u;v), is weakly continuous at $u_o \in V$ if and only if

$$\lim_{u \to u_o} dJ(u; v) = dJ(u_o; v), \quad \text{for every } v \in V_o.$$

This is equivalent to

$$\lim_{\|u-u_o\|\to 0} |dJ(u;v) - dJ(u_o;v)| = 0, \quad \text{ for every } v \in V_o.$$

Euler-Lagrange Multiplier Theorem.

Let V denote a normed linear space and V_o a nontrivial subspace of V. Let $J: V \to \mathbb{R}$ and $K: V \to \mathbb{R}$ be functionals that are Gâteaux differentiable at every $u \in V$ in the direction of every $v \in V_o$. Assume also that the Gâteaux derivatives, dJ(u; v) and dK(u; v), of J and K, respectively, are weakly continuous in u for all $u \in V$.

Suppose there exists $u_o \in V$ such that $K(u_o) = c$, for some real number c, and

$$J(u_o) \leq J(v)$$
 (or $J(u_o) \geqslant J(v)$) for all $v \in V$ such that $K(v) = c$.

Then, either

$$dK(u_o; v) = 0$$
, for all $v \in V_o$,

or there exists a real number μ such that

$$dJ(u_o; v) = \mu \ dK(u_o; v), \quad \text{for all } v \in V_o.$$

Do the following problems

1. Let $V = C^1([a, b], \mathbb{R})$ and define

$$||y|| = \max_{a \leqslant x \leqslant b} |y(x)| + \max_{a \leqslant x \leqslant b} |y'(x)|, \quad \text{for all } y \in V.$$
 (1)

Verify that $\|\cdot\|$ given in (1) defines a norm in V.

2. Let $V = C^1([a, b], \mathbb{R})$. We consider V with the norm given in (1). Define $J: V \to \mathbb{R}$ by

$$J(y) = \int_{a}^{b} \sqrt{1 + (y'(x))^2} \, dx, \quad \text{for all } y \in V.$$
 (2)

Verify that the Gâteaux derivative of the functional J defined in (2) is weakly continuous at all $y \in V$.

Suggestion: Define $g(z) = \frac{z}{\sqrt{1+z^2}}$, for all $z \in \mathbb{R}$, and show that

$$|g(z_1) - g(z_2)| \le |z_1 - z_2|$$
, for all $z_1, z_2 \in \mathbb{R}$.

Hint: Verify that $|g'(z)| \leq 1$ for all $z \in \mathbb{R}$.

3. Let V be a normed linear space with norm $\|\cdot\|$. A linear functional $L\colon V\to \mathbb{R}$ is said to be bounded if and only if there exists a constant M>0 such that

$$|L(v)| \leq M||v||$$
, for all $v \in V$.

Let $J: V \to \mathbb{R}$ be functional defined by J(u) = L(u) for all $u \in V$, where $L: V \to \mathbb{R}$ is a bounded linear functional. Show that the Gâteaux derivative of J is weakly continuous for all $u \in V$.

4. Consider the class \mathcal{A} of functions $y \in C_o^1([0,b],\mathbb{R})$ such that $y(x) \geq 0$ for all $x \in [0,b]$ and $\int_0^b y(x) \ dx = a$, for a positive value a.

Give the necessary condition that $y \in \mathcal{A}$ must satisfy for functional $J: V \to \mathbb{R}$ given by

$$J(y) = \int_0^b \sqrt{1 + (y'(x))^2} \, dx$$
, for all $y \in C_o^1([0, b], \mathbb{R})$,.

to be the smallest possible in A at y. Explain the reasoning leading to your answer.

5. Let $V = C^1([a,b],\mathbb{R})$ be endowed with the norm $\|\cdot\|$ defined in (1). Let $F: [a,b] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $G: [a,b] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous functions with continuous partial derivatives F_y , F_z , G_y and G_z .

Define the functionals $J \colon V \to \mathbb{R}$ and $K \colon V \to \mathbb{R}$ by

$$J(y) = \int_a^b F(x, y(x), y'(x)) \ dx, \quad \text{for all } y \in V,$$

and

$$K(y) = \int_a^b G(x, y(x), y'(x)) \ dx, \quad \text{for all } y \in V.$$

Assume that the Gâteaux derivatives of J and K are weakly continuous in y.

Apply the Euler–Lagrange multiplier theorem to find necessary conditions for $y \in V$ to be an optimizer of the functional J subject to the constraint K(y) = c, for some real constant c.