Assignment \#8

Due on Friday, November 8, 2019
Read Section 5.4, The Isoperimetric Theorem, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

- The Isoperimetric Theorem. For any simple, closed curve C in the $x y$-plane of perimeter ℓ and which encloses a region of area A, the following inequality holds true:

$$
\begin{equation*}
4 \pi A \leqslant \ell^{2} \tag{1}
\end{equation*}
$$

Furthermore, equality in (1) is attained if and only if C is a circle.

- The inequality in (1) is known as the isoperimetric inequality.
- Wirtinger's Inequality. Let $f \in C_{o}^{1}([0, \pi], \mathbb{R})$ be such that

$$
\lim _{t \rightarrow 0^{+}} f^{\prime}(t) \text { and } \lim _{t \rightarrow \pi^{-}} f^{\prime}(t) \text { exist. }
$$

Then,

$$
\begin{equation*}
\int_{0}^{\pi}(f(t))^{2} d t \leqslant \int_{0}^{\pi}\left(f^{\prime}(t)\right)^{2} d t \tag{2}
\end{equation*}
$$

Furthermore, equality in (2) is attained if and only if $f(t)=c \sin t$, for some constant c.

Do the following problems

1. Let \mathcal{A} denote that class of simple, closed curves in the plane whose inside has area A. Use the isoperimetric theorem to find the shape of the curve in \mathcal{A} that has the smallest possible perimeter. Explain the reasoning leading to your solution.
2. For given $b>0$, put $V=C^{1}([0, b], \mathbb{R})$ and $V_{o}=C_{o}^{1}([0, b], \mathbb{R})$. Define functionals $J: V \rightarrow \mathbb{R}$ and $K: V \rightarrow \mathbb{R}$ by

$$
J(y)=\int_{0}^{b} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x, \quad \text { for all } y \in V
$$

and

$$
K(y)=\int_{0}^{b} y(x) d x, \quad \text { for all } y \in V
$$

respectively. Let

$$
\mathcal{A}=\left\{y \in V_{o} \mid y(x) \geqslant 0\right\}
$$

Use the isoperimetric theorem to solve the following constrained optimization problem:

Minimize $J(y)$ for $y \in \mathcal{A}$ subject to the constraint

$$
K(y)=a,
$$

for some $a>0$.
3. Let $f \in C_{o}^{1}([0, \pi], \mathbb{R})$ be such that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} f^{\prime}(x) \text { and } \lim _{t \rightarrow \pi^{-}} f^{\prime}(x) \text { exist. } \tag{3}
\end{equation*}
$$

(a) Use the assumption in (3) and L'Hospital's rule to deduce that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{\cos t}{\sin t} f(t) \text { and } \lim _{t \rightarrow \pi^{-}} \frac{\cos t}{\sin t} f(t) \text { exist. } \tag{4}
\end{equation*}
$$

(b) Use the result in (4) to compute

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{(\cos t)(f(t))^{2}}{\sin t} \text { and } \lim _{t \rightarrow \pi^{-}} \frac{(\cos t)(f(t))^{2}}{\sin t} \tag{5}
\end{equation*}
$$

(c) Use integration by parts and the result from part (b) above to show that

$$
\begin{equation*}
\int_{0}^{\pi} 2 \frac{\cos t}{\sin t} f(t) f^{\prime}(t) d t=\int_{0}^{\pi} \frac{(f(t))^{2}}{\sin ^{2} t} d t \tag{6}
\end{equation*}
$$

Explain why both integrals in (6) are finite.
4. Let $f \in C_{o}^{1}([0, \pi], \mathbb{R})$ be such that the assumption in (3) is satisfied.

Expand the integrand in $\int_{0}^{\pi}\left[f^{\prime}(t)-\frac{\cos t}{\sin t} f(t)\right]^{2} d t$ and use the result in (6) to derive the identity

$$
\begin{equation*}
\int_{0}^{\pi}\left[f^{\prime}(x)-\frac{\cos t}{\sin t} f(t)\right]^{2} d t=\int_{0}^{\pi}\left(f^{\prime}(t)\right)^{2} d t-\int_{0}^{\pi}(f(t))^{2} d t . \tag{7}
\end{equation*}
$$

5. Proof of Wirtinger's Inequality. Let $f \in C_{o}^{1}([0, \pi], \mathbb{R})$ be such that the assumption in (3) is satisfied.
(a) Use the identity in (7) to deduce Wirtinger's inequality in (2).
(b) Use the identity in (7) and the basic lemma I to deduce that, if equality holds true in (2), then f solves the ODE

$$
\begin{equation*}
\frac{d y}{d t}-\frac{\cos t}{\sin t} y=0, \quad \text { for } 0<t<\pi \tag{8}
\end{equation*}
$$

(c) Use separation of variables to solve the ODE in (8) and deduce that equality in (2) holds true if and only if $y=c \sin t$, for $t \in[0, \pi]$, and for some constant c.

