Assignment \#1

Due on Friday, September 13, 2019
Read Section 2.1 on the Definition of Euclidean Space in the class Lecture Notes.
Read Section 2.2 on Spans, Lines and Planes in the class Lecture Notes.
Do the following problems

1. Let $v_{1}=\left(\begin{array}{r}-1 \\ 2 \\ -2\end{array}\right)$ and $v_{2}=\left(\begin{array}{r}3 \\ -5 \\ 4\end{array}\right)$.
(a) Give the parametric equations of the line through the point $P:(0,4,7)$ in the direction of the vector v_{1}.
(b) Give the equation of the plane through the point $P(0,4,7)$ spanned by the vectors v_{1} and v_{2}.
2. The following give parametric equations of two lines in \mathbb{R}^{3} :

$$
\left\{\begin{array} { l }
{ x = - 1 + 4 t } \\
{ y = - 7 t } \\
{ z = 2 - t }
\end{array} \quad \left\{\begin{array}{l}
x=-1+s \\
y=2-s \\
z=2 s
\end{array}\right.\right.
$$

Determine if the two lines ever meet. Justify your answer. If the lines do meet, give the equation of the plane that contains both lines.
3. The following give parametric equations of two lines in \mathbb{R}^{3} :

$$
\left\{\begin{array} { l }
{ x = 2 + 4 t } \\
{ y = - 1 - 7 t } \\
{ z = 2 - t }
\end{array} \quad \left\{\begin{array}{l}
x=s \\
y=1-s \\
z=-2+2 s
\end{array}\right.\right.
$$

Determine if the two lines ever meet. Justify your answer. If the lines do meet, give the equation of the plane that contains both lines.
4. The vectors $v_{1}=\left(\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$ in \mathbb{R}^{3} can span a line, a plane or the entire three dimensional Euclidean space \mathbb{R}^{3}. Give the equation of the geometric object that the vectors v_{1}, v_{2} and v_{3} span. Assume the vectors v_{1}, v_{2} and v_{3} are in standard position.
5. Consider the plane in \mathbb{R}^{3} whose equation is

$$
\begin{equation*}
x-4 y+7 z=3 \tag{1}
\end{equation*}
$$

(a) Find two vectors, v_{1} and v_{2}, that span the plane given by the equation in (1).
(b) Express the plane given by the equation in (1) in the form

$$
\overrightarrow{O P}+\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)
$$

where P is a point in the plane.

