Assignment \#14

Due on Friday, November 22, 2019
Read Section 5.1 on Path Integrals in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

- Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ be a continuous scalar field. Let $C \subset U$ be a C^{1} simple curve. We define the integral of f over C, denoted $\int_{C} f \mathrm{~s}$, to be

$$
\int_{C} f d s=\int_{a}^{b} f(\sigma(t))\left\|\sigma^{\prime}(t)\right\| d t
$$

where $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ is any C^{1} parametrization of C.

- A curve, C, is said to be piece-wise C^{1} if C can be decomposed into a finite union of C^{1} simple curves, $C_{1}, C_{2}, \ldots, C_{k}$:

$$
C=\bigcup_{i=1}^{k} C_{i} .
$$

If $C \subset U$, where U is an open subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is a continuous scalar field, we define the integral of f over C by

$$
\int_{C} f d s=\sum_{i=i}^{k} \int_{C_{i}} f d s
$$

Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \quad \text { for } 0 \leqslant t \leqslant \pi
$$

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ for all $(x, y, z) \in \mathbb{R}^{3}$. Evaluate

$$
\int_{C} f d s
$$

2. Find the mass of a wire that is parametrized by

$$
C=\left\{\left.\left(\frac{3}{2} t^{2},(1+2 t)^{3 / 2}\right) \right\rvert\, 0 \leqslant t \leqslant 2\right\}
$$

and has a linear density (mass per unit length) given by $\rho(x, y)=2 x+1$.
3. Let $f(x, y)=y$ for all $(x, y) \in \mathbb{R}^{2}$. For each of the following curves, C, in the $x y$-plane, evaluate $\int_{C} f d s$.
(a) C is the segment along the x axis from $(0,0)$ to $(1,0)$.
(b) C is the segment along the y axis from $(0,0)$ to $(0,1)$.
(c) C is the unit circle in \mathbb{R}^{2}.
4. Evaluate $\int_{C}\left(x^{3}-y z\right) d s$, where C is the intersection of the planes $x+y-z=1$ and $z=3 x$ from $x=0$ to $x=1$.
5. Let C denote the boundary of the square

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1\right\}
$$

Evaluate the integral of $f(x, y)=x y^{2}$, for $(x, y) \in \mathbb{R}^{2}$, over C.
Note: Observe that C is not a C^{1} curve, but it can be decomposed into an union of four simple, C^{1} curves.

