Assignment \#15

Due on Wednesday, December 4, 2019
Read Section 5.2 on Line Integrals in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

- (Line Integrals) Let U be an open subset of \mathbb{R}^{n} and $F: U \rightarrow \mathbb{R}^{n}$ be a continuous vector field. Let $C \subset U$ be a C^{1} simple curve parmetrized by a C^{1} path $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$. We define the line integral of F over C, oriented according to the parametrization, σ, denoted $\int_{C} F \cdot d \vec{r}$, to be

$$
\int_{C} F \cdot d \vec{r}=\int_{a}^{b} F(\sigma(t)) \cdot \sigma^{\prime}(t) d t
$$

If $U \subseteq \mathbb{R}^{3}$ and $F=f_{1} \widehat{i}+f_{2} \widehat{j}+f_{3} \widehat{k}$, where $f_{j}: U \rightarrow \mathbb{R}$ are continuous scalar fields, we denote $\int_{C} F \cdot d \vec{r}$ by $\int_{C} f_{1} d x+f_{2} d y+f_{3} d z$. The expression $f_{1} d x+f_{2} d y+f_{3} d z$ is called a differential 1-form in \mathbb{R}^{3}.

- If the curve C is not C^{1}, but is piece-wise C^{1}, then the line integral of F over C is given by:

$$
\int_{C} F \cdot d \vec{r}=\sum_{i=i}^{k} \int_{C_{i}} F \cdot d \vec{r}
$$

where $C=\bigcup_{i=1}^{k} C_{i}$, and the orientation of each C_{i} is consistent with that of C.

Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \quad \text { for } 0 \leqslant t \leqslant \pi
$$

Let $F(x, y, z)=x \widehat{i}+y \widehat{j}+z \widehat{k}$, for all $(x, y, z) \in \mathbb{R}^{3}$, be a vector field in \mathbb{R}^{3}. Evaluate the line integral $\int_{C} F \cdot d \vec{r}$; that is, the integral of the tangential component of the field F along the curve C.
2. Evaluate $\int_{C} y z d x+x z d y+x y d z$, where C is the directed line segment from the point $(1,1,0)$ to the point $(3,2,1)$ in \mathbb{R}^{3}.
3. Integrate the 1 -form $x y^{2} d x+y d y$ along each of the following paths from $(0,0)$ to $(1,1)$:
(a) the straight line form $(0,0)$ to $(1,1)$,
(b) the line from $(0,0)$ to $(1,0)$ followed by the line from $(1,0)$ to $(1,1)$,
(c) the lines from $(0,0)$ to $(0,1)$ to $(1,1)$.
4. Integrate the 1 -form $x y^{2} d x+y d y$ along each of the following paths from $(0,0)$ to $(1,1)$:
(a) the curve $y=x^{2}$;
(b) the curve $x=y^{2}$;
(c) the lines from $(0,0)$ to $(2,0)$ to $(2,1)$ to $(1,1)$.
5. Let $f: U \rightarrow \mathbb{R}$ be a C^{1} scalar field defined on an open subset U of \mathbb{R}^{n}. Define the vector field $F: U \rightarrow \mathbb{R}^{n}$ by $F(u)=\nabla f(u)$ for all $u \in U$. Suppose that C is a C^{1} simple curve in U connecting the point u to the point v in U. Show that

$$
\int_{C} F \cdot d \vec{r}=f(v)-f(u) .
$$

Conclude therefore that the line integral of F along a path from u to v in U is independent of the path connecting u to v. The field F is called a gradient field.

