Assignment #16

Due on Friday, December 6, 2019

Read Section 5.3 on *Gradient Fields* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Read Section 5.4 on *Flux Across Plane Curves* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Read Section 5.7 on *Evaluating Differential 2-Forms: Double Integrals* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

• Flux across a simple, closed curve in \mathbb{R}^2 . Let U denote an open subset of \mathbb{R}^2 and $F: U \to \mathbb{R}^2$ be a two-dimensional vector field given by

$$F(x,y) = P(x,y) \ \hat{i} + Q(x,y) \ \hat{j}, \quad \text{ for all } (x,y) \in U,$$

where P and Q are scalar fields defined in U. Let C denote a simple, piece–wise C^1 , closed curve contained in U, which is oriented in the counterclockwise sense.

The flux of F across C, denoted by $\oint_C F \cdot \hat{n} \, ds$, is defined by

$$\oint_C F \cdot \hat{n} \, ds = \int_C P(x, y) \, dy - Q(x, y) \, dx,$$

where \hat{n} denotes the outward unit normal to the curve C, wherever it is defined.

• The fundamental theorem of Calculus in \mathbb{R}^2 or \mathbb{R}^3 for oriented triangles. Let U denote an open region in \mathbb{R}^2 or \mathbb{R}^3 and T an oriented triangle contained in U. Denote the boundary of T by ∂T . If ω is any differential 1-form defined in U, the

$$\int_{T} d\omega = \oint_{\partial T} \omega. \tag{1}$$

• Green's theorem. Let U denote an open region in \mathbb{R}^2 and R be a bounded, open set in U with piece-wise C^1 boundary ∂R contained in U. Assume that ∂R is a simple, closed curve that is oriented in the counterclockwise sense. For any C^1 functions, $P: U \to \mathbb{R}$ and $Q: U \to \mathbb{R}$, defined in U,

$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy = \oint_{\partial R} P \, dx + Q \, dy \tag{2}$$

Do the following problems.

1. Let U denote an open subset of \mathbb{R}^n that is path connected; see definition of "path connected" in problem 4 of Assignment #12. Let $F: U \to \mathbb{R}^n$ be a vector field with the property that

$$\oint_C F \cdot d\overrightarrow{r} = 0,$$

for any simple, piece–wise C^1 , closed curve, C, contained in U.

Let p and q be points in U. Since U is path connected, there exists a C^1 path, $\sigma: [0,1] \to U$, connecting p to q. Assume that σ parametrizes a curve C_1 in U. Prove that if $\gamma: [0,1] \to U$ is another C^1 path that connects p to q, and $C_2 = \gamma([0,1])$ is parametrized by γ , then

$$\int_{C_1} F \cdot d\overrightarrow{r} = \int_{C_2} F \cdot d\overrightarrow{r}.$$

2. Let U denote an open subset of \mathbb{R}^n and let $F: U \to \mathbb{R}^n$ be a vector field with the property that $F(v) = \nabla f(v)$ for all $v \in U$, where $f: U \to \mathbb{R}$ is a C^1 scalar field.

Prove that if C is any C^1 , simple, closed curve in U, then

$$\oint_C F \cdot d\overrightarrow{r} = 0.$$

3. Let T denote the triangle with vertices $P_o(0,0)$, $P_1(2,0)$ and $P_2(1,1)$, where the boundary, ∂T , of T is oriented in the counterclockwise sense. Let $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the vector field given by

$$F(x,y) = -\frac{y}{2}\hat{i} + \frac{x}{2}\hat{j}.$$

Compute the flux of F across ∂T , $\oint_{\partial T} F \cdot d\mathbf{n}$.

- 4. Let *R* denote the triangular region in the *xy*-plane with vertices (0,0), (1,0) and (1,1). Evaluate the double integral $\iint_R xy^2 dxdy$.
- 5. Let T and F be as in Problem 3. Evaluate the flux of F across ∂T , $\oint_{\partial T} F \cdot d\mathbf{n}$, by applying Green's Theorem in (2).