Assignment \#16

Due on Friday, December 6, 2019
Read Section 5.3 on Gradient Fields in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Read Section 5.4 on Flux Across Plane Curves in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.
Read Section 5.7 on Evaluating Differential 2-Forms: Double Integrals in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

- Flux across a simple, closed curve in \mathbb{R}^{2}. Let U denote an open subset of \mathbb{R}^{2} and $F: U \rightarrow \mathbb{R}^{2}$ be a two-dimensional vector field given by

$$
F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}, \quad \text { for all }(x, y) \in U
$$

where P and Q are scalar fields defined in U. Let C denote a simple, piece-wise C^{1}, closed curve contained in U, which is oriented in the counterclockwise sense. The flux of F across C, denoted by $\oint_{C} F \cdot \widehat{n} d s$, is defined by

$$
\oint_{C} F \cdot \widehat{n} d s=\int_{C} P(x, y) d y-Q(x, y) d x
$$

where \widehat{n} denotes the outward unit normal to the curve C, wherever it is defined.

- The fundamental theorem of Calculus in \mathbb{R}^{2} or \mathbb{R}^{3} for oriented triangles. Let U denote an open region in \mathbb{R}^{2} or \mathbb{R}^{3} and T an oriented triangle contained in U. Denote the boundary of T by ∂T. If ω is any differential 1-form defined in U, the

$$
\begin{equation*}
\int_{T} d \omega=\oint_{\partial T} \omega \tag{1}
\end{equation*}
$$

- Green's theorem. Let U denote an open region in \mathbb{R}^{2} and R be a bounded, open set in U with piece-wise C^{1} boundary ∂R contained in U. Assume that ∂R is a simple, closed curve that is oriented in the counterclockwise sense. For any C^{1} functions, $P: U \rightarrow \mathbb{R}$ and $Q: U \rightarrow \mathbb{R}$, defined in U,

$$
\begin{equation*}
\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{\partial R} P d x+Q d y \tag{2}
\end{equation*}
$$

Do the following problems.

1. Let U denote an open subset of \mathbb{R}^{n} that is path connected; see definition of "path connected" in problem 4 of Assignment $\# 12$. Let $F: U \rightarrow \mathbb{R}^{n}$ be a vector field with the property that

$$
\oint_{C} F \cdot d \vec{r}=0
$$

for any simple, piece-wise C^{1}, closed curve, C, contained in U.
Let p and q be points in U. Since U is path connected, there exists a C^{1} path, $\sigma:[0,1] \rightarrow U$, connecting p to q. Assume that σ parametrizes a curve C_{1} in U. Prove that if $\gamma:[0,1] \rightarrow U$ is another C^{1} path that connects p to q, and $C_{2}=\gamma([0,1])$ is paramatrized by γ, then

$$
\int_{C_{1}} F \cdot d \vec{r}=\int_{C_{2}} F \cdot d \vec{r}
$$

2. Let U denote an open subset of \mathbb{R}^{n} and let $F: U \rightarrow \mathbb{R}^{n}$ be a vector field with the property that $F(v)=\nabla f(v)$ for all $v \in U$, where $f: U \rightarrow \mathbb{R}$ is a C^{1} scalar field.
Prove that if C is any C^{1}, simple, closed curve in U, then

$$
\oint_{C} F \cdot d \vec{r}=0 .
$$

3. Let T denote the triangle with vertices $P_{o}(0,0), P_{1}(2,0)$ and $P_{2}(1,1)$, where the boundary, ∂T, of T is oriented in the counterclockwise sense. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the vector field given by

$$
F(x, y)=-\frac{y}{2} \widehat{i}+\frac{x}{2} \widehat{j}
$$

Compute the flux of F across $\partial T, \oint_{\partial T} F \cdot d \mathbf{n}$.
4. Let R denote the triangular region in the $x y$-plane with vertices $(0,0),(1,0)$ and $(1,1)$. Evaluate the double integral $\iint_{R} x y^{2} d x d y$.
5. Let T and F be as in Problem 3. Evaluate the flux of F across $\partial T, \oint_{\partial T} F \cdot d \mathbf{n}$, by applying Green's Theorem in (2).

