Assignment #2

Due on Wednesday, September 18, 2019

Read Section 2.3, on *The Dot Product and Euclidean Norm*, in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Read Section 2.4, on *Orthogonality and Projections*, in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Do the following problems

- 1. The dot product, or inner product, of two vectors in \mathbb{R}^n is symmetric, bi-linear and positive definite; that is, for vectors v, v_1 , v_2 and w in \mathbb{R}^n ,
 - (i) $v \cdot w = w \cdot v$
 - (ii) $(c_1v_1 + c_2v_2) \cdot w = c_1v_1 \cdot w + c_2v_2 \cdot w$, and
 - (iii) $v \cdot v \ge 0$ for all $v \in \mathbb{R}^n$ and $v \cdot v = 0$ if and only if v is the zero vector.

Use these properties of the the inner product in \mathbb{R}^n to derive the following properties of the norm $\|\cdot\|$ in \mathbb{R}^n , where

$$||v|| = \sqrt{v \cdot v}$$
 for all vectors $v \in \mathbb{R}^n$.

- (a) $||v|| \ge 0$ for all $v \in \mathbb{R}^n$ and ||v|| = 0 if and only if $v = \mathbf{0}$, the zero-vector in \mathbb{R}^n .
- (b) For a scalar c, ||cv|| = |c|||v||.
- 2. The Cauchy-Schwarz inequality. For any vectors v and w in \mathbb{R}^n ,

$$|v \cdot w| \leqslant ||v|| ||w||.$$

Use this inequality to derive the triangle inequality: For any vectors v and w in \mathbb{R}^n ,

$$||v + w|| \le ||v|| + ||w||.$$

(Suggestion: Start with the expression $||v+w||^2$ and use the properties of the inner product to simplify it.)

3. Given two non-zero vectors v and w in \mathbb{R}^n , the cosine of the angle, θ , between the vectors can be defined by

$$\cos \theta = \frac{v \cdot w}{\|v\| \|w\|}.$$

Use the Cauchy-Schwarz inequality to justify why this definition makes sense.

4. Two vectors v and w in \mathbb{R}^n are said to be *orthogonal* or perpendicular, if and only if $v \cdot w = 0$.

Show that if v and w are orthogonal, then

$$||v + w||^2 = ||v||^2 + ||w||^2.$$

Give a geometric interpretation of this result in two–dimensional Euclidean space.

- 5. A vector u in \mathbb{R}^n is said to be a unit vector if and only if ||u|| = 1. Let u be a unit vector in \mathbb{R}^n and v be any vector in \mathbb{R}^n .
 - (a) Give the parametric equation of the line through origin in the direction of u.
 - (b) Let $f(t) = ||v tu||^2$ for all $t \in \mathbb{R}$. Explain why this function gives the square of the distance from the point at v to a point on the line through the origin in the direction of u.
 - (c) Show that f(t) is minimized when $t = v \cdot u$.