Assignment #3

Due on Friday, September 20, 2019

Read Section 2.3, on *The Dot Product and Euclidean Norm*, in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Read Section 2.4, on *Orthogonality and Projections*, in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Do the following problems

1. The vectors $v_1 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ span a two-dimensional subspace in \mathbb{R}^3 ; in other words, a plane through the origin. Give two unit vectors that

2. Use an appropriate orthogonal projection to compute the shortest distance from the point P(1,1,2) to the plane in \mathbb{R}^3 whose equation is

$$2x + 3y - z = 6.$$

3. The dual space of of \mathbb{R}^n , denoted $(\mathbb{R}^n)^*$, is the vector space of all linear transformations from \mathbb{R}^n to \mathbb{R} .

For a given $w \in \mathbb{R}^n$, define $T_w : \mathbb{R}^n \to \mathbb{R}$ by

$$T_w(v) = w \cdot v$$
 for all $v \in \mathbb{R}^n$.

Show that T_w is an element of the dual of \mathbb{R}^n for all $w \in \mathbb{R}^n$.

are orthogonal to each other, and which also span the plane.

4. Prove that for every linear transformation, $T: \mathbb{R}^n \to \mathbb{R}$, there exists $w \in \mathbb{R}^n$ such that

$$T(v) = w \cdot v$$
 for every $v \in \mathbb{R}^n$.

(*Hint:* See where T takes the standard basis $\{e_1, e_2, \ldots, e_n\}$ in \mathbb{R}^n .)

5. Let u_1, u_2, \ldots, u_n be unit vectors in \mathbb{R}^n which are mutually orthogonal; that is,

$$u_i \cdot u_j = 0$$
 for $i \neq j$.

Prove that the set $\{u_1, u_2, \dots, u_n\}$ is a basis for \mathbb{R}^n , and that, for any $v \in \mathbb{R}^n$,

$$v = \sum_{i=1}^{n} (v \cdot u_i) \ u_i.$$