Assignment \#5

Due on Friday, October 4, 2019
Read Section 3.1 on Types of Functions in Euclidean Space in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Read Section 3.2 on Open Subsets of Euclidean Space in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.
Read Section 3.3 on Continuous Functions in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Do the following problems

1. Let U_{1} and U_{2} denote subsets in \mathbb{R}^{n}.
(a) Show that if U_{1} and U_{2} are open subsets of \mathbb{R}^{n}, then their intersection

$$
U_{1} \cap U_{2}=\left\{y \in \mathbb{R}^{n} \mid y \in U_{1} \text { and } y \in U_{2}\right\}
$$

is also open.
(b) Show that the set $\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, y=0\right\}$ is not an open subset of \mathbb{R}^{2}.
2. In Problem 4 of Assignment \#3 you proved that every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ must be of the form

$$
T(v)=w \cdot v, \quad \text { for every } \quad v \in \mathbb{R}^{n}
$$

where w is some vector in \mathbb{R}^{n}. Use this fact, together with the Cauchy-Schwarz inequality, to prove that T is continuous at every point in \mathbb{R}^{n}.
3. Let x and y denote real numbers.

Starting with the self-evident inequality: $(|x|-|y|)^{2} \geqslant 0$, derive the inequality

$$
\begin{equation*}
|x y| \leqslant \frac{1}{2}\left(x^{2}+y^{2}\right) \tag{1}
\end{equation*}
$$

4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Use the inequality in (1) to show that f is continuous at the origin.
5. Let

$$
f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0)
$$

Define $f(0,0)$ so that $f(x, y)$ is continuous at $(0,0)$. Explain the reasoning leading to your answer.

