Assignment \#6

Due on Wednesday, October 9, 2019
Read Section 3.3 on Continuous Functions in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

- (Continuous Function) Let U denote an open subset of \mathbb{R}^{n}. A function $F: U \rightarrow$ \mathbb{R}^{m} is said to be continuous at $v \in U$ if and only if $\lim _{\|w-v\| \rightarrow 0}\|F(w)-F(v)\|=0$.
- (Image) If $A \subseteq U$, the image of A under the map $F: U \rightarrow \mathbb{R}^{m}$, denoted by $F(A)$, is defined as the set $F(A)=\left\{w \in \mathbb{R}^{m} \mid w=F(v)\right.$ for some $\left.v \in A\right\}$.
- (Pre-image) If $B \subseteq \mathbb{R}^{m}$, the pre-image of B under the map $F: U \rightarrow \mathbb{R}^{m}$, denoted by $F^{-1}(B)$, is defined as the set $F^{-1}(B)=\{v \in U \mid F(v) \in B\}$.
Note that $F^{-1}(B)$ is always defined even if F does not have an inverse map.

Do the following problems

1. Use the triangle inequality to prove that, for any v and w in \mathbb{R}^{n},

$$
|\|v\|-\|w\|| \leqslant\|v-w\| .
$$

Use this inequality to deduce that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(v)=\|v\| \quad \text { for all } v \in \mathbb{R}^{n}
$$

is continuous on \mathbb{R}^{n}.
2. Let f and g denote two real-valued functions defined on an open region, D, in \mathbb{R}^{2}. Prove that the vector field $F: D \rightarrow \mathbb{R}^{2}$, defined by

$$
F\binom{x}{y}=\binom{f(x, y)}{g(x, y)} \quad \text { for all } \quad\binom{x}{y} \in D
$$

is continuous on D if and only f and g are both continuous on D.
3. Let U denote an open subset of \mathbb{R}^{n} and let $F: U \rightarrow \mathbb{R}^{m}$ and $G: U \rightarrow \mathbb{R}^{m}$ be two given functions.
(a) Explain how the sum $F+G$ is defined.
(b) Prove that if both F and G are continuous on U, then their sum is also continuous.
(Suggestion: Use the triangle inequality.)
4. In each of the following, given the function $F: U \rightarrow \mathbb{R}^{m}$ and the set B, compute the pre-image $F^{-1}(B)$.
(a) $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, F\binom{x}{y}=\binom{x^{2}+y^{2}}{x^{2}-y^{2}}$, and $B=\left\{\binom{1}{0}\right\}$.
(b) Let $D=\mathbb{R}^{2} \backslash\{(0,0)\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>0\right\}$ (the punctured plane), and define $f: D \rightarrow \mathbb{R}$ by

$$
f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}, \quad \text { for } \quad(x, y) \in D
$$

Put $B=\{2\}$.
(c) $f: D \rightarrow \mathbb{R}$ is as in part (b), and $B=\{0\}$.
5. Compute the image of the given sets under the following maps:
(a) $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \sigma(t)=(\cos t, \sin t)$, for all $t \in \mathbb{R}$. Compute $\sigma(\mathbb{R})$.
(b) $f: D \rightarrow \mathbb{R}$ and D are as given in part (b) of the previous problem. Compute $f(D)$.

