Review Problems for Exam 2

- 1. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} ||v||^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u): \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?
- 2. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.
 - (a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
 - (b) Compute ∇f in terms of g'(r), r and the vector $\vec{\mathbf{r}} = x\hat{i} + y\hat{j}$.
- 3. Let $f: U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n , and let \widehat{u} be a unit vector in \mathbb{R}^n . If the limit

$$\lim_{t \to 0} \frac{f(v + t\widehat{u}) - f(v)}{t}$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \hat{u} . We denote it by $D_{\hat{u}}f(v)$.

(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^n , the directional derivative of f in the direction of \widehat{u} at v exists, and

$$D_{\widehat{u}}f(v) = \nabla f(v) \cdot \widehat{u},$$

where $\nabla f(v)$ is the gradient of f at v.

- (b) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}}f(v) = 0$ for every unit vector \widehat{u} in \mathbb{R}^n , then $\nabla f(v)$ must be the zero vector.
- (c) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Use the Cauchy–Schwarz inequality to show that the largest value of $D_{\widehat{u}}f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.
- 4. Let U denote an open and convex subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is differentiable at every $v \in U$. Fix u and v in U, and define $g: [0,1] \to \mathbb{R}$ by

$$g(t) = f(u + t(v - u))$$
 for $0 \le t \le 1$.

(a) Explain why the function g is well defined.

(b) Show that g is differentiable on (0,1) and that

$$g'(t) = \nabla f(u + t(v - u)) \cdot (v - u) \quad \text{for } 0 < t < 1.$$

(c) Use the mean value theorem for derivatives to show that there exists a point z is the line segment connecting u to v such that

$$f(v) - f(u) = D_{\widehat{w}} f(z) ||v - u||,$$

where \widehat{w} is the unit vector in the direction of the vector v-u; that is, $\widehat{w} = \frac{1}{\|v-u\|}(v-u)$, provided that $v \neq 0$.

- (d) Prove that if U is an open and convex subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is differentiable on U with $\nabla f(v) = \mathbf{0}$ for all $v \in U$, then f must be a constant function.
- 5. Let U be an open subset of \mathbb{R}^n and I be an open interval. Suppose that $f: U \to \mathbb{R}$ is a differentiable scalar field and $\sigma: I \to \mathbb{R}^n$ be a differentiable path whose image lies in U. Suppose also that $\sigma'(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t) = f(\sigma(t))$ for all $t \in I$.

- 6. Let C denote the boundary of the oriented triangle, T = [(0,0)(1,0)(1,2)], in \mathbb{R}^2 . Evaluate the line integral $\int_C \frac{x^2}{2} dy \frac{y^2}{2} dx$, by applying the fundamental theorem of Calculus.
- 7. Let $F(x,y) = 2x \ \widehat{i} y \ \widehat{j}$ and R be the square in the xy-plane with vertices (0,0), (2,-1), (3,1) and (1,2). Evaluate $\oint_{\partial R} F \cdot \widehat{n} \ ds$.
- 8. Evaluate the line integral $\int_{\partial R} (x^4 + y) dx + (2x y^4) dy$, where R is the rectangular region

$$R = \{(x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 3, -2 \leqslant y \leqslant 1\},\$$

and ∂R is traversed in the counterclockwise sense.

9. Integrate the function given by $f(x,y) = xy^2$ over the region, R, defined by:

$$R = \{(x, y) \in \mathbb{R}^2 \mid x \geqslant 0, 0 \leqslant y \leqslant 4 - x^2\}.$$

10. Let R denote the region in the plane defined by inside of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (1)$$

for a > 0 and b > 0.

- (a) Evaluate the line integral $\oint_{\partial R} x \, dy y \, dx$, where ∂R is the ellipse in (1) traversed in the positive sense.
- (b) Use your result from part (a) and the fundamental theorem of Calculus to come up with a formula for computing the area of the region enclosed by the ellipse in (1).
- 11. Evaluate the double integral $\int_R e^{-x^2} dx dy$, where R is the region in the xy-plane sketched in Figure 1.

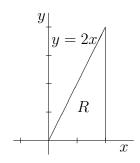


Figure 1: Sketch of Region R in Problem 11