Review Problems for Exam 2

1. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\frac{1}{2}\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$. Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in \mathbb{R}^{n}$. What is the gradient of f at u for all $x \in \mathbb{R}^{n}$?
2. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\overrightarrow{\mathbf{r}}=x \widehat{i}+y \widehat{j}$.
3. Let $f: U \rightarrow \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^{n}, and let \widehat{u} be a unit vector in \mathbb{R}^{n}. If the limit

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}
$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \widehat{u}. We denote it by $D_{\widehat{u}} f(v)$.
(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^{n}, the directional derivative of f in the direction of \widehat{u} at v exists, and

$$
D_{\widehat{u}} f(v)=\nabla f(v) \cdot \widehat{u},
$$

where $\nabla f(v)$ is the gradient of f at v.
(b) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}} f(v)=$ 0 for every unit vector \widehat{u} in \mathbb{R}^{n}, then $\nabla f(v)$ must be the zero vector.
(c) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Use the CauchySchwarz inequality to show that the largest value of $D_{\widehat{u}} f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.
4. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $v \in U$. Fix u and v in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(u+t(v-u)) \quad \text { for } \quad 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(u+t(v-u)) \cdot(v-u) \text { for } 0<t<1
$$

(c) Use the mean value theorem for derivatives to show that there exists a point z is the line segment connecting u to v such that

$$
f(v)-f(u)=D_{\widehat{w}} f(z)\|v-u\|
$$

where \widehat{w} is the unit vector in the direction of the vector $v-u$; that is, $\widehat{w}=\frac{1}{\|v-u\|}(v-u)$, provided that $v \neq 0$.
(d) Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.
5. Let U be an open subset of \mathbb{R}^{n} and I be an open interval. Suppose that $f: U \rightarrow$ \mathbb{R} is a differentiable scalar field and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path whose image lies in U. Suppose also that $\sigma^{\prime}(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t)=f(\sigma(t))$ for all $t \in I$.
6. Let C denote the boundary of the oriented triangle, $T=[(0,0)(1,0)(1,2)]$, in \mathbb{R}^{2}. Evaluate the line integral $\int_{C} \frac{x^{2}}{2} \mathrm{~d} y-\frac{y^{2}}{2} \mathrm{~d} x$, by applying the fundamental theorem of Calculus.
7. Let $F(x, y)=2 x \widehat{i}-y \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$. Evaluate $\oint_{\partial R} F \cdot \hat{n} \mathrm{~d} s$.
8. Evaluate the line integral $\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \quad \mathrm{d} y$, where R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\}
$$

and ∂R is traversed in the counterclockwise sense.
9. Integrate the function given by $f(x, y)=x y^{2}$ over the region, R, defined by:

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0,0 \leqslant y \leqslant 4-x^{2}\right\}
$$

10. Let R denote the region in the plane defined by inside of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \tag{1}
\end{equation*}
$$

for $a>0$ and $b>0$.
(a) Evaluate the line integral $\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x$, where ∂R is the ellipse in (1) traversed in the positive sense.
(b) Use your result from part (a) and the fundamental theorem of Calculus to come up with a formula for computing the area of the region enclosed by the ellipse in (1).
11. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y-$ plane sketched in Figure 1.

Figure 1: Sketch of Region R in Problem 11

