Solutions to Review Problems for Exam 2

1. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\frac{1}{2}\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$. Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in \mathbb{R}^{n}$. What is the gradient of f at u for all $x \in \mathbb{R}^{n}$?
Solution: Let u and w be any vector in \mathbb{R}^{n} and consider

$$
\begin{aligned}
f(u+w) & =\frac{1}{2}\|u+w\|^{2} \\
& =\frac{1}{2}(u+w) \cdot(u+w) \\
& =\frac{1}{2} u \cdot u+u \cdot w+\frac{1}{2} w \cdot w \\
& =\frac{1}{2}\|u\|^{2}+u \cdot w+\frac{1}{2}\|w\|^{2}
\end{aligned}
$$

so that,

$$
\begin{equation*}
f(u+w)=f(u)+u \cdot w+\frac{1}{2}\|w\|^{2} \tag{1}
\end{equation*}
$$

The equation in (1) suggests that we set

$$
\begin{equation*}
D f(u) w=u \cdot w, \quad \text { for } u, w \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E(u ; w)=\frac{1}{2}\|w\|^{2}, \quad \text { for } u, w \in \mathbb{R}^{n} . \tag{3}
\end{equation*}
$$

Note that

$$
\frac{E(u ; w)}{\|w\|}=\frac{1}{2}\|w\|, \quad \text { for } w \neq \mathbf{0}
$$

Consequently,

$$
\lim _{\|w\| \rightarrow 0} \frac{|E(u ; w)|}{\|w\|}=0
$$

Thus, in view of (1), (3) and (3), we have shown that f is differentiable at u with derivative map $D f(u)$ given in (2). We therefore see that $\nabla f(u)=u$ for all $u \in \mathbb{R}^{n}$.

Alternate Solution: Alternatively, writing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for u, we have that

$$
f(u)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right), \quad \text { for all } u \in \mathbb{R}^{n} .
$$

Then, the partial derivatives of f are

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=x_{1}, \quad \text { for } i=1,2, \ldots, n \tag{4}
\end{equation*}
$$

which are continuous functions in \mathbb{R}^{n}. Thus, f is C^{1} map and is therefore differentiable.
According to (4), the gradient of f is given by

$$
\nabla f(u)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=u, \quad \text { for all } u \in \mathbb{R}^{n}
$$

2. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

Solution: Take the partial derivative of $r^{2}=x^{2}+y^{2}$ on both sides with respect to x to obtain

$$
\frac{\partial\left(r^{2}\right)}{\partial x}=2 x
$$

Applying the chain rule on the left-hand side we get

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

which leads to

$$
\frac{\partial r}{\partial x}=\frac{x}{r}
$$

Similarly, $\frac{\partial r}{\partial y}=\frac{y}{r}$.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.

Solution: Take the partial derivative of $f(x, y)=g(r)$ on both sides with respect to x and apply the chain rule to obtain

$$
\frac{\partial f}{\partial x}=g^{\prime}(r) \frac{\partial r}{\partial x}=g^{\prime}(r) \frac{x}{r}
$$

Similarly, $\frac{\partial f}{\partial y}=g^{\prime}(r) \frac{y}{r}$.

It then follows that

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial x} \widehat{i}+\frac{\partial f}{\partial y} \widehat{j} \\
& =g^{\prime}(r) \frac{x}{r} \widehat{i}+g^{\prime}(r) \frac{y}{r} \widehat{j} \\
& =\frac{g^{\prime}(r)}{r}(x \widehat{i}+y \widehat{j}) \\
& =\frac{g^{\prime}(r)}{r} \mathbf{r} .
\end{aligned}
$$

3. Let $f: U \rightarrow \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^{n}, and let \widehat{u} be a unit vector in \mathbb{R}^{n}. If the limit

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}
$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \widehat{u}. We denote it by $D_{\widehat{u}} f(v)$.
(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^{n}, the directional derivative of f in the direction of \widehat{u} at v exists, and

$$
D_{\widehat{u}} f(v)=\nabla f(v) \cdot \widehat{u},
$$

where $\nabla f(v)$ is the gradient of f at v.
Proof: Suppose that f is differentiable at $v \in U$. Then,

$$
f(v+w)=f(v)+D f(v) w+E(w)
$$

where

$$
D f(v) w=\nabla f(v) \cdot w,
$$

and

$$
\lim _{\|w\| \rightarrow 0} \frac{|E(w)|}{\|w\|}=0
$$

Thus, for any $t \in \mathbb{R}$,

$$
f(v+t \widehat{u})=f(v)+t \nabla f(v) \cdot \widehat{u}+E(t \widehat{u}),
$$

where

$$
\lim _{|t| \rightarrow 0} \frac{|E(t \widehat{u})|}{|t|}=0
$$

since $\|t \widehat{u}\|=|t|\|\widehat{u}\|=|t|$.
We then have that, for $t \neq 0$,

$$
\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}=\frac{E(t \widehat{u})}{t}
$$

and consequently

$$
\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=\frac{|E(t \widehat{u})|}{|t|},
$$

from which we get that

$$
\lim _{t \rightarrow 0}\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=0
$$

This proves that

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}=\nabla f(v) \cdot \widehat{u}
$$

so that, the directional derivative of f in the direction of \widehat{u} at v exists, and $D_{\widehat{u}} f(v)=\nabla f(v) \cdot \widehat{u}$.
(b) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}} f(v)=$ 0 for every unit vector \widehat{u} in \mathbb{R}^{n}, then $\nabla f(v)$ must be the zero vector.

Proof: Suppose, by way of contradiction, that $\nabla f(v) \neq \mathbf{0}$, and put

$$
\widehat{u}=\frac{1}{\|\nabla f(v)\|} \nabla f(v) .
$$

Then, \widehat{u} is a unit vector, and therefore, by the assumption,

$$
D_{\widehat{u}} f(v)=0,
$$

or

$$
\nabla f(v) \cdot \widehat{u}=0
$$

But this implies that

$$
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v)=0
$$

where

$$
\begin{aligned}
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) & =\frac{1}{\|\nabla f(v)\|} \nabla f(v) \cdot \nabla f(v) \\
& =\frac{1}{\|\nabla f(v)\|}\|\nabla f(v)\|^{2} \\
& =\|\nabla f(v)\| .
\end{aligned}
$$

It then follows that $\|\nabla f(v)\|=0$, which contradicts the assumption that $\nabla f(v) \neq \mathbf{0}$. Therefore, $\nabla f(v)$ must be the zero vector.
(c) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Use the CauchySchwarz inequality to show that the largest value of $D_{\widehat{u}} f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.

Proof. If f is differentiable at x, then $D_{\widehat{u}} f(x)=\nabla f(x) \cdot \widehat{u}$, as was shown in part (a). Thus, by the Cauchy-Schwarz inequality,

$$
\left|D_{\widehat{u}} f(x)\right| \leqslant\|\nabla f(x)\|\|\widehat{u}\|=\|\nabla f(x)\|,
$$

since \widehat{u} is a unit vector. Hence,

$$
-\|\nabla f(x)\| \leqslant D_{\widehat{u}} f(x) \leqslant\|\nabla f(x)\|
$$

for any unit vector \widehat{u}, and so the largest value that $D_{\widehat{u}} f(x)$ can have is $\|\nabla f(x)\|$.
If $\nabla f(x) \neq \mathbf{0}$, then $\widehat{u}=\frac{1}{\|\nabla f(x)\|} \nabla f(x)$ is a unit vector, and

$$
\begin{aligned}
D_{\widehat{u}} f(x) & =\nabla f(x) \cdot \widehat{u} \\
& =\nabla f(x) \cdot \frac{1}{\|\nabla f(x)\|} \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|} \nabla f(x) \cdot \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|}\|\nabla f(x)\|^{2} \\
& =\|\nabla f(x)\| .
\end{aligned}
$$

Thus, $D_{\widehat{u}} f(x)$ attains its largest value when \widehat{u} is in the direction of $\nabla f(x)$.
4. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $u \in U$. Fix u and v in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(u+t(v-u)) \quad \text { for } 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.

Answer: Since U is convex, for any $u, v \in U, u+t(v-u) \in U$ for all $t \in[0,1]$. Thus, $f(u+t(v-u))$ is defined for all $t \in[0,1]$, because f is defined on U.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(u+t(v-u)) \cdot(v-u) \quad \text { for } 0<t<1 .
$$

Solution: It follows from the chain rule that the composition $g=f \circ$ $\sigma:[0,1] \rightarrow \mathbb{R}$, where $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ is the path given by

$$
\sigma(t)=u+t(v-u), \quad \text { for all } t \in[0,1]
$$

is differentiable in $(0,1)$ and

$$
g^{\prime}(t)=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t), \quad \text { for all } t \in(0,1)
$$

where

$$
\sigma(t)=v-u, \quad \text { for all } t
$$

Consequently, we get that

$$
g^{\prime}(t)=\nabla f(u+t(v-u)) \cdot(v-u) \quad \text { for } 0<t<1 .
$$

(c) Use the mean value theorem for derivatives to show that there exists a point z is the line segment connecting u to v such that

$$
\begin{equation*}
f(v)-f(u)=D_{\widehat{w}} f(z)\|v-u\|, \tag{5}
\end{equation*}
$$

where \widehat{w} is the unit vector in the direction of the vector $v-u$; that is, $\widehat{w}=\frac{1}{\|v-u\|}(v-u)$.
Solution: The mean value theorem implies that there exists $\tau \in(0,1)$ such that

$$
g(1)-g(0)=g^{\prime}(\tau)(1-0)
$$

so that

$$
\begin{equation*}
f(v)-f(u)=\nabla f(u+\tau(v-u)) \cdot(v-u) \tag{6}
\end{equation*}
$$

Put $z=u+\tau(v-u)$ and $\widehat{w}=\frac{1}{\|v-u\|}(v-u)$. We can then write (6) as

$$
\begin{aligned}
f(v)-f(u) & =\left(\nabla f(z) \cdot \frac{1}{\|v-u\|}(v-u)\right)\|v-u\| \\
& =(\nabla f(z) \cdot \widehat{w})\|v-u\|
\end{aligned}
$$

which yields (5).
(d) Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.
Solution: Fix $u_{o} \in U$. Then, for any $u \in U$, the formula in (5) yields

$$
\begin{equation*}
f(u)-f\left(u_{o}\right)=D_{\widehat{w}} f(z)\left\|u-u_{o}\right\| \tag{7}
\end{equation*}
$$

where $D_{\widehat{w}} f(z)=\nabla f(z) \cdot \widehat{w}=0$ by the assumption. Hence, it follows from (7) that

$$
f(u)=f\left(u_{o}\right), \quad \text { for all } u \in U
$$

in other words, f is constant in U.
5. Let U be an open subset of \mathbb{R}^{n} and I be an open interval. Suppose that $f: U \rightarrow$ \mathbb{R} is a differentiable scalar field and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path whose image lies in U. Suppose also that $\sigma^{\prime}(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t)=f(\sigma(t))$ for all $t \in I$.
Solution: If f has a local maximum or minimum at $\sigma\left(t_{o}\right)$, then $g^{\prime}\left(t_{o}\right)=0$, where, by the chain rule,

$$
g^{\prime}(t)=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t) \quad \text { for all } t \in I
$$

It then follows that

$$
\nabla f\left(\sigma\left(t_{o}\right)\right) \cdot \sigma^{\prime}\left(t_{o}\right)=0
$$

and, consequently, $\nabla f\left(\sigma\left(t_{o}\right)\right.$ is perpendicular to the tangent to the path at $\sigma\left(t_{o}\right)$.
6. Let C denote the boundary of the oriented triangle, $T=[(0,0)(1,0)(1,2)]$, in \mathbb{R}^{2}. Evaluate the line integral $\int_{C} \frac{x^{2}}{2} \mathrm{~d} y-\frac{y^{2}}{2} \mathrm{~d} x$, by applying the Fundamental Theorem of Calculus.
Solution: Apply the Fundamental Theorem of Calculus to the 1-form

$$
\omega=-\frac{y^{2}}{2} \mathrm{~d} x+\frac{x^{2}}{2} \mathrm{~d} y
$$

over the oriented triangle T; namely,

$$
\int_{\partial T} \omega=\int_{T} d \omega
$$

where

$$
d \omega=(x+y) d x \wedge d y
$$

Thus, since T is positively oriented, it follows that

$$
\begin{aligned}
\int_{\partial T} \omega & =\iint_{T}(x+y) d x d y \\
& =\int_{0}^{1} \int_{0}^{2 x}(x+y) d y d x \\
& =\int_{0}^{1}\left[x y+\frac{y^{2}}{2}\right]_{0}^{2 x} d x \\
& =\int_{0}^{1} 4 x^{2} d x
\end{aligned}
$$

so that

$$
\int_{C} \frac{x^{2}}{2} \mathrm{~d} y-\frac{y^{2}}{2} \mathrm{~d} x=\frac{4}{3}
$$

7. Let $F(x, y)=2 x \widehat{i}-y \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$. Evaluate $\oint_{\partial R} F \cdot n \mathrm{~d} s$.
Solution: Apply the Fundamental Theorem of Calculus,

$$
\oint_{\partial R} F \cdot \widehat{n} d s=\int_{R} d \omega,
$$

Figure 1: Sketch of Region R in Problem 7
where

$$
\omega=P d y-Q d x=2 x d y-(-y) d x=y d x+2 x d y
$$

so that

$$
d \omega=d y \wedge d x+2 d x \wedge d y=d x \wedge d y
$$

we obtain that

$$
\begin{aligned}
\oint_{\partial R} F \cdot d \mathbf{n} & =\int_{R} d x \wedge d y \\
& =\iint_{R} d x d y \\
& =\operatorname{area}(R)
\end{aligned}
$$

To find the area of the region R, shown in Figure 1, observe that R is a parallelogram determined by the vectors $v=2 \widehat{i}-\widehat{j}$ and $w=\widehat{i}+2 \widehat{j}$. Thus,

$$
\operatorname{area}(R)=\|v \times w\|=5
$$

It the follows that

$$
\oint_{\partial R} F \cdot n \mathrm{~d} s=\iint_{R} \mathrm{~d} x \mathrm{~d} y=5 .
$$

8. Evaluate the line integral $\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \quad \mathrm{d} y$, where R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\}
$$

and ∂R is traversed in the counterclockwise sense.
Solution: Apply the Fundamental Theorem of Calculus to get

$$
\begin{aligned}
\int_{\partial R}\left(x^{4}+y\right) d x+\left(2 x-y^{4}\right) d y & =\int_{R} d\left(x^{4}+y\right) \wedge d x+d\left(2 x-y^{4}\right) \wedge d y \\
& =\int_{R} d y \wedge d x+2 d x \wedge d y \\
& =\int_{R} d x \wedge d y \\
& =\operatorname{area}(R) \\
& =12
\end{aligned}
$$

9. Integrate the function given by $f(x, y)=x y^{2}$ over the region, R, defined by:

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0,0 \leqslant y \leqslant 4-x^{2}\right\}
$$

Solution: The region, R, is sketched in Figure 2. We evaluate the double

Figure 2: Sketch of Region R in Problem 11
integral, $\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y$, as an iterated integral

$$
\begin{aligned}
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\left.\int_{0}^{2} \frac{x y^{3}}{3}\right|_{0} ^{4-x^{2}} \mathrm{~d} x \\
& =\frac{1}{3} \int_{0}^{2} x\left(4-x^{2}\right)^{3} \mathrm{~d} x
\end{aligned}
$$

To evaluate the last integral, make the change of variables: $u=4-x^{2}$. We then have that $\mathrm{d} u=-2 x \mathrm{~d} x$ and

$$
\begin{aligned}
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =-\frac{1}{6} \int_{4}^{0} u^{3} \mathrm{~d} u \\
& =\frac{1}{6} \int_{0}^{4} u^{3} \mathrm{~d} u
\end{aligned}
$$

Thus,

$$
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y=\frac{4^{4}}{24}=\frac{32}{3} .
$$

10. Let R denote the region in the plane defined by inside of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{8}
\end{equation*}
$$

for $a>0$ and $b>0$.
(a) Evaluate the line integral $\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x$, where ∂R is the ellipse in (8) traversed in the positive sense.

Figure 3: Sketch of ellipse

Solution: A sketch of the ellipse is shown in Figure 3 for the case $a<b$. A parametrization of the ellipse is given by

$$
x=a \cos t, \quad y=b \sin t, \quad \text { for } \quad 0 \leqslant t \leqslant 2 \pi .
$$

We then have that $\mathrm{d} x=-a \sin t \mathrm{~d} t$ and $\mathrm{d} y=b \cos t \mathrm{~d} t$. Therefore

$$
\begin{aligned}
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x & =\int_{0}^{2 \pi}[a \cos t \cdot b \cos t-b \sin t \cdot(-a \cos t)] \mathrm{d} t \\
& =\int_{0}^{2 \pi}\left[a b \cos ^{2} t+a b \sin ^{2} t\right] \mathrm{d} t \\
& =a b \int_{0}^{2 \pi}\left(\cos ^{2} t+a b \sin ^{2} t\right) \mathrm{d} t \\
& =a b \int_{0}^{2 \pi} \mathrm{~d} t \\
& =2 \pi a b .
\end{aligned}
$$

(b) Use your result from part (a) and the Fundamental Theorem of Calculus
to come up with a formula for computing the area of the region enclosed by the ellipse in (8).
Solution: Let $F(x, y)=x \widehat{i}+y \widehat{j}$. Then,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=\oint_{\partial R} F \cdot n \mathrm{~d} s .
$$

Thus, by Green's Theorem in divergence form,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=\iint_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where

$$
\operatorname{div} F(x, y)=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)=2
$$

Consequently,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=2 \iint_{R} \mathrm{~d} x \mathrm{~d} y=2 \operatorname{area}(R) .
$$

It then follows that

$$
\operatorname{area}(R)=\frac{1}{2} \oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x
$$

Thus,

$$
\operatorname{area}(R)=\pi a b
$$

by the result in part (a).
11. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y-$ plane sketched in Figure 4.
Solution: Compute

$$
\begin{aligned}
\iint_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{2 x} e^{-x^{2}} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} 2 x e^{-x^{2}} \mathrm{~d} x \\
& =\left[-e^{-x^{2}}\right]_{0}^{2} \\
& =1-e^{-4}
\end{aligned}
$$

Figure 4: Sketch of Region R in Problem 11

