Math 67. Rumbos

Solutions to Review Problems for Final Exam

1. In this problem, u and v denote vectors in R"™.

(a)

Use the triangle inequality to derive the inequality

| o] = [Ju]] | < ||jv—ul forall u,ve R"

Solution: Write
[ull = [[(u —v) + v

and applying the triangle inequality to obtain

[ull < flu— ol + v,
from which we get that

[ull = [lv]] < [lo = ul]
Interchanging the roles for v and v in (2) we obtain

ol = flull < flu—wvl|.

from which we get
ol = flull < [lv —ull.

Combining (2) and (3) yields
—llv = ull < ljoll = flull <o =],

which is (1).
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O

Use the inequality derived in the previous part to show that the function
f: R" = R given by f(v) = ||v]|, for all v € R™, is continuous in R".

Solution: Fix u € R™ and apply the inequality in (1) to any v € R™ to

obtain that
[o]] = [Jull] < v —ul],

or
[f(v) = Fu)] < v —ull.
Next, apply the Squeeze Lemma to obtain from (4) that

lim | f(v) = f(u)] =0,

[[lv—u||—0

which shows that f is continuous at u for any u € R".
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(c) Prove that the function g: R™ — R given by g(v) = sin(||v||), for allv € R™,
is continuous.

Solution: Observe that g = sinof, where f: R® — R is as defined in
part (b). Thus, g is the composition of two continuous functions, and is,
therefore, continuous. 0

2. Define the scalar field f: R — R by f(v) = [Jv||* for all v € R".
(a) Show that f is differentiable in R™ and compute the linear map
Df(u): R" - R for all ueR"

What is the gradient of f at u for all u € R"?
Solution: Let u € R™ and compute

flutw) = Jlu+wl?
= (u+w)- (u+w)
= u-utuv-wt+tw-ut+w-w

= [ull® + 2u-w + [Jwl]?,

for w € R™, where we have used the symmetry of the dot product and the
fact that [[v]|> = v - v for all v € R™. We therefore have that

flu+w)= f(u)+2u-w+ ||w||?>, forallucR”andw € R™. (5)

Writing
Df(u)w=2u-w, forallue R" and w € R", (6)

and
E,(w) = ||w|?*, forallu € R" and w € R", (7)

we see that (5) can be rewritten as
flu+w) = f(u)+ Df(u)w + E,(w), forallueR" and w € R", (8)

where, according to (6), Df(u): R" — R™ defines a linear transformation,
and, by virtue of (7),

| Eu(w)]
]l

— ol for w0,
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from which we get that

| Eu(w)]

lwl—0 ||w]|

=0.

Consequently, in view of (8), we conclude that f is differentiable at every
u € R", derivative at u given by (6).
Since D f(u)w = V f(u) - w, for all u and w in R™, by comparing with (6),
we see that

Vf(u)=2u, forall ueR"

O
Alternate Solution: Alternatively, for v = (x1,22,...,2,) € R", we
have that
flu) = ai+ a5+ 4y
so that 5
8_xfj(u):2xj’ for j=1,2,...,n.

Thus, all the partial derivatives of f are continuous on R™; that is, f is a
C'! function. Consequently, f is differentiable on R™. Furthermore,

Df(u)w = (2x1 2L9 - an) w, for all w € R,
which can be written as
Df(u)w =2u-w, forall we R". (9)
It then follows that V f(u) = 2u for all u € R™. O

Let ¥ denote a unit vector in R™. For a fixed vector u in R", define
g: R — R by g(t) = ||u — tv]|?, for all t € R. Show that g is differentiable
and compute ¢'(t) for all t € R.

Solution: Observe that g = f o o, where o: R — R" is given by
o(t)y=u—tv, forallteR. (10)
Thus, o is a differentiable path with
o'(t)=—v, forallteR. (11)

Thus, by the result from part (a), g is the composition of two differentiable
functions. Consequently, by the Chain Rule, g is differentiable with

g (t)=Df(o(t))o'(t), forallteR. (12)
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Thus, using (9) and (11), we obtain from (12) that
g(t)=20(t) (—0), forallteR,

or

g(t)=—20(t)-v, forallteR. (13)
Thus, using (10), we obtain from (13) that
gt)=—-2(u—tv)-v, forallteR,
which leads to
gt)=2t—2u-v, forallteR, (14)
since ¥ is a unit vector in R™. O

Let v be as in the previous part. For any u € R"™, give the point on the
line spanned by © which is the closest to u. Justify your answer.

Solution: Tt follows from (14) that ¢”(t) = 2 > 0 for all ¢ € R; so that ¢
has a global minimum when ¢'(¢) = 0. We then obtain from (14) that g(t)
is the smallest possible when

t=u-0.

Consequently, the point on the line spanned by v that is the closest to u
is (u - U)v, or the orthogonal projection of u onto the direction of v. O

3. Let I denote an open interval which contains the real number a. Assume that
o: I — R" is a C' parametrization of a curve C' in R". Define s: I — R as
follows:

s(t) = arlength along the curve C from o(a) to o(t), (15)

forallt e I.

(a)

Give a formula, in terms of an integral, for computing s(t) for all ¢ € .

Answer: .
s(t) = / o' (7)|| dr, forallt e I. (16)

O
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(b)

Prove that s is differentiable on I and compute s'(¢) for all t € I. Deduce
that s is strictly increasing with increasing ¢.

Solution: It follows from the assumption that o is C*, the Fundamental
Theorem of Calculus, and (16), that s is differentiable and

st)=|o' @), foraltel. (17)

Since we are also assuming that o is a parametrization of a C! curve, C,
it follows that o’(t) # O for all t € I. Consequently, we obtain from (17)
that

s'(t) >0, foralltel,

which shows that s(t) is strictly increasing with increasing ¢. 0

Let ¢ denote the arclength of C, and suppose that v: [0,/] - R" is a a
parametrization of C' with the arclength parameter s defined in (15); so
that,

C={x(s)|0< s < 0},

Use the fact that o(t) = ~(s(t)), for all ¢ € [a,b], to show 7/(s) is a unit
vector that is tangent to the curve C' at the point v(s).

Solution: Note that ¢ = 7 o s is a composition of two differentiable
functions, by the result of part (b). Consequently, by the chain rule,

d
a(t) = d—iv'(s), for t € (a,b).

Thus, using (16),
o'(t) = o'WV (s),  fort € (a,b).
So, using the fact that ||o’(¢)|| > 0 for all ¢ € (a,b),

1
'@l

which shows that /(s) is a unit vector that is tangent to the curve C' at
the point y(s). O

7 (s) a'(t), forte€ (a,b),
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4. Let I denote an open interval of real numbers and f: I — R be a differentiable
function. Let a,b € I be such that a < b, and define C' to the section of the
graph of y = f(x) from the point (a, f(a)) to the point (b, f(b)); that is,

C={(z,y) €R*|y = f(r) and a < z < b}

(a) By providing an appropriate parametrization of C', compute the arclenth

of C, ¢(C).
Solution: Parametrize C' by o: [a,b] — R? given by

o(t)=1(t,f(t)), fora<t<b.

Then,
at)=(1,f' (), fora<t<b;
so that
o' ()| = /14 [f(t)]?, fora<t<b.
Therefore, b
(0) = [ VIR ar a8)
O

(b) Let f(z) =5—22%2, for z > 0. Compute the exact arcength of y = f(z)
over the interval [0, 11].

Solution: We use the formula in (18) with
f'(t)= =3t fort>0.
Thus,
oe) = /0 h V1+ 9t dt

11

= {%(1 + 9t)3/2] 0

2
= —-(1000 — 1
5 )

= 74
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5. Let ®: R? — R? denote the map from the uv-plane to the zy-plane given by

) (“) - (%ﬁ) for all (“) € R?, (19)
v v v
and let T be the oriented triangle [(0,0), (1,0), (1,1)] in the uv—plane.
(a) Show that @ is differentiable and give a formula for its derivative, D®(u, v),
at every point (Z) in R2.

Solution: Write
o (u) = ( f(u,v) ) for all (u) € R?,
v g(u,v) v

where f(u,v) = 2u and g(u,v) = v? for all Z) € R Observe that the

partial derivatives of f and g exist and are given by

aof B of B
%(uv U) - 27 v (u,v) =0
dg B dg B
%(u, v) =0, %(u, v) =20

Note that the partial derivatives of f and g are continuous. Therefore,
® is a C!' map. Hence, ® is differentiable on R? and its derivative map
at (u,v), for any (u,v) € R?, is given by multiplication by the Jacobian

matrix
2 0

Do) = (1§ );
that is,

h 2 0 h 2h

poe) (3) = (6 20) (1) = (5)
forall(Z)E]Rz. O
(b) Give the image, R, of the triangle 7" under the map ®, and sketch it in the

xy—plane.

Solution: The image of T under ® is the set
O(T) = {(z,y) € R*| x =2u,y=1?% for some (u,v)€ R}

= {(z,y) eR?|0< <2, 0<y<2?/4}.
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y=a*/4

Figure 1: Sketch of Region ®(7')

A sketch of R = ®(T') is shown in Figure 1.

To see how the sketch in Figure 1 is obtained, refer to the sketch of the
triangle T" in the uv—plane shown in Figure 2.

We first see where the boundary of T' gets mapped by the transforma-
tion ®. Note the boundary of T consists of three straight line segments
[(0,0),(1,0)], [(1,0),(1,1)] and [(1,1), (0,0)] oriented according a counter-
clockwise orientation along the boundary of T'. The straight line segment
[(0,0),(1,0)] can be parametrized by

u=t v=0, for0<t<1 (20)

Applying map ® in (19) to the parametric equations in (20) we obtain

t 2t
= <t<K
(I)(O> (O) for 0 <t <1,

which yields the parametric equations
r=2t, y=0, for0<t<1,

or the straight line segment [(0,0), (2,0)] in the zy—plane shown in Figure
1.

Similarly, the straight line segment [(1,0), (1,1)] in the wv—plane can be
parametrized by the equations

u=1 v=t, for0<t<I1.

Applying the map @ yields

1 2
(I)(t):(tz) for0 <t <1,
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so that, the straight line segment [(1,0), (1, 1)] in the uv—plane gets mapped
to the a set in the xy—plane with parametric equations

r=2 y=t> for0<t<]1,

which is a parametrization of the straight line segment [(2,0), (2, 1)] shown
in Figure 1.

Finally, the segment [(1,1), (0,0)] in the uv—plane can be parametrized by
u=1—t,v=1—t for0<t <1

Applying the mapping ® then yields

o G - i) _ (%i—&)) for 0 <t <1,
from which we get the parametric equations
r=21-t)2y=(1-1t)? for0<t <1 (21)
Squaring on both sides of the first equation in (21) yields
v =4(1-1t)?% for0<t<1,
and, comparing this with the second equation in (21), we obtain
x? = 4y,

from which we get that
L 5
y=4% for 0 <o < 2. (22)

we have therefore shown that the function ® maps the straight line segment
[(1,1),(0,0)] to the portion of the graph of the equation in (22) from (0, 0)
to (2,1) in the zy—plane as shown in Figure 1. O

Evaluate the integral / / dxdy, where R is the region in the zy-plane
R
obtained in part (b).
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Solution: Compute by means of iterated integrals

2 px?/4
//dxdy = // dy dx

R o Jo
2,2

= /x—dac
0 4
£l
12,

[GVRI

0
(d) Evaluate the integral / | det[D®(u, v)]| dudv, where det[D®(u,v)] de-

T
notes the determinant of the Jacobian matrix of ® obtained in part (a).
Compare the result obtained here with that obtained in part (c).

Solution: Compute det[D®(u,v)] to get

det[D®(u,v)] = 4w.

/ | det[DP(u,v)]|dudv = // 4|v| dudv,

where the region T, in the uv—plane is sketched in Figure 2. Observe that,

so that

Figure 2: Sketch of Region T’

in that region, v > 0, so that

/ | det[D®(u, v)]|dudv = // 4v dudv,
T T
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Compute by means of iterated integrals

1 u
//|det[DCI>(u,v)]|dudv = //4U dvdu
T o Jo
1
= /2u2 du
0

2

57
which is the same result as that obtained in part (c). 0

1yt
6. Consider the iterated integral / / xy/1 —y? dydzx.
0 Jz2

(a) Identify the region of integration, R, for this integral and sketch it.
Solution: The region R = {(z,y) e R* | 22 <y <1, 0 <z < 1} is
sketched in Figure 3. U

Figure 3: Sketch of Region R

(b) Change the order of integration in the iterated integral and evaluate the
double integral / xy/1 —y? dxdy.
R

Solution: Compute
N
// /1 —y? dedy = / / xy/1 —y? dxdy
R 0o Jo

12 VY
- [z, e
0

0

1
= / %\/1—3/2 dy.
0
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Next, make the change of variables u = 1 — y? to obtain that

1 0
//;E\/l—dea:dy = _Z_L/ Vu du
R 1
1 1
= —/ Vu du
4 Jo
1

6.

7. Let f: R — R denote a twice—differentiable real valued function and define

u(z,t) = f(x —ct) forall (z,t) € R?

where ¢ is a real constant.
Pu 0%

Verify that Frehe c 92
Solution: Apply the chain rule to obtain
ou ’ 0 /
%_f(a:—ct)~%(Jc—ct)—f(x—ct).
Similarly,
0%u y
@ = f ($ — Ct),
% = f'(x — ct) - %(w —ct) = —cf'(x — ct),
and 52
_u — 2 .
5z = C f(x —ct).

Combining (23) and (24) we see that

a2u 2 ¢l 262u
w—Cf (l'—Ct)—C @,

which was to be verified.

12

(23)

(24)
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8. What is the region R over which you integrate when evaluating the iterated
integral

2 T
x
—— dy da?
/1 /1 V2 +y?
Rewrite this as an iterated integral first with respect to x, then with respect to
y. Evaluate this integral. Which order of integration is easier?
Solution: The region R = {(x,y) e R?* | 1 <y <z, 1 <z <2} is sketched in
Figure 4. Interchanging the order of integration, we obtain that

Figure 4: Sketch of Region R

dedy = dxdy. (25)

oo - [ [

The iterated integral in (25) is easier to evaluate; in fact,

dedy = dxdy

fommen - [ [

2

= /12[\/3327“;2} dy

Y

- /12[@—\/%] dy.



Math 67. Rumbos Fall 2019 14

We therefore get that

" 2 2
————dxdy = / \/4+y2dy—\/§/ydy. 26
/ /R Va2 +y? 1 1 (26)

Evaluating the second integral on the right—hand side of (26) yields

2
3
/ y dy = 7" (27)
1

The first integral on the right-hand side of (26) can be evaluated using the
integration formula

2
/\/a2+u2 du = V@ + S lnfu+ Va? +12] + .

with a = 2, to obtain

2 y A 2
/\/4+y2dy = {— 44+y*+ -In 4+y2}
1 2 2 .
which evaluates to
2 V5 2+/8
Vai+y2dy = 2¢§——+21 . 28
/1 y? dy <1+\/5 (28)

Substituting (27) and (28) into (26) we obtain

vZ VB, (2448
1+v5)

//—x dxd
‘/L‘ p—
R 22 +y? ’ 2 2

9. Let f: R — R denote a twice—differentiable real valued function and define

u(z,y) = f(r) where r=+/22+92 forall (z,y) € R

(a) Define the vector field F(x,y) = Vu(z,y). Express F' in terms of f’ and
r.

Solution: Compute

auc 8’&/\

F(z,y) = Vu(z,y) = p a 7,
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where, by the chain rule,

ou or

o f(r) Oz
and P 9
U , T

or

r
To compute — and — , write
ox ox

2 2 2
re=x"+y°,

Fall 2019

and differentiate with respect to x on both sides of (32) to obtain

or
2r— =2
"o = 20
from which we get
ar «x
— ==, f .
o= for () # (0,0)
Similarly,
ar y
— =2 f :
o=t o () £ 0.0)
Substituting (33) into (30) yields
u _ f'(r)
or  r

Similarly, substituting (34) into (31) yields

Ou _ f'(r)

dy 7

Next, substitute (35) and (36) into (29) to obtain

1)

F(z,y) (xi+y )

15

(32)

(35)
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(b) Express the divergence of the gradient of u, in terms of f’, f” and r.
The expression div(Vu) is called the Laplacian of u, and is denoted by Au

or V2u.
Solution: From (37) we obtain that
! r / r
e =Lt =12,

so that, applying the product rule, the chain rule and quotient rule,

or  f'(r) d [f'(r)] or
FrE—— +%;[r]a

_ SO, ) e

T T T

(38)

where we have also used (33). Simplifying the expression in (38) yields

0P _ S0 S'0) S0 30

oz r 72 r3

Similar calculations lead to

0Q _ [f'(r) /'
T i

,(T) _ y2 f/(T) (40)

r3

Adding the results in (39) and (40), we then obtain that

. oP 0Q
divF = %+8_y
(41)
_ L0 S0 S
r r r

where we have used (32). Simplifying the expression in (41), we get that

divE = f'(r)+2 /7@-

10. Let f(x,y) = 4x — Ty for all (z,y) € R? and g(z,y) = 222 + y>.
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Figure 5: Sketch of ellipse

(a) Sketch the graph of the set C' = ¢~ !(1) = {(z,y) € R?* | g(x,y) = 1}.
Solution: The curve C' is the graph of the equation

which is sketched in Figure 5. 0

(b) Show that at the points where f has an extremum on C|, the gradient of
f is parallel to the gradient of g.

Solution: Let o: [0,27] — R? denote the C' parametrization of C' given
by
2
o(t) = (%— cost, sint) , forall t €[0,2n].

We then have that
g(o(t)) =1, for all . (42)

=1
Differentiating on both sides of (42) yields that
Vg(o(t)) -o'(t) =0, for allt,

where we have applied the Chain Rule, which shows that Vg(z,y) is per-
pendicular to the tangent vector to C at (z,y).
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Next, suppose that f(o(t)) has a critical point at t,. Then, the derivative
of f(o(t)) at t, is 0; that is,
Vf(o(to)) - o'(to) =0,

where we have applied the Chain Rule. It then follows that V f(z,,y,) is
perpendicular to the tangent vector to C' at a critical point (x,,y,). Hence,
V f(x,,y,) must be parallel to Vg(x,, y,). d

Find the largest and the smallest value of f on C.

Solution: By the result of part (b), at a critical point, (z,y), of f on C,
it must be the case that

Vy(z,y) = AV f(z,y), (43)
for some non—zero real number A, where
Viey)=4i-17], (44)

and R R
Vg(x,y) =4z i+ 2y j. (45)

Substituting (44) and (45) into (43) yields the pair of equations
=\ (46)

and
2y = =T\ (47)

Substituting the expressions for x and y in (46) and (47), respectively, into
the equation of the ellipse

20 +y? =1,
yields that
57
N2 =
4 Y
from which we get that
257

The values for A in (48), together with (46) and (47), yield the critical

points
(75F) = (5 57)

(49)

57 ' 57 57 7 57
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Evaluating the function f at each of the critical points in (49) we obtain
that

t«wﬁjﬁv:ﬁ7wdf(&@j§3:4ﬁ

57 7 57 57 57

Consequently, the largest value of f on C'is v/57 and the smallest value is

—/57. O

11. In this problem we consider the line integral / x dr+y dy+ z dz, where C'is
C
any piece-wise C'! curve in R3.

(a) If possible, find a C! function, f, such that df = x dx +y dy + 2 d=.

Solution: We look for a C* function f: R®* — R such that df = x dx +
y dy + z dz, where

aof aof of
df p dx + 8_3/ dy + 5, d
We then have that of
of
24 _ 1
and of
or _ . P
It follows from (50) that
2
fla,y.2) = =+ gla,y), forall (z,y,2) € R?, (53)

2

where g: R? — R is some C! function of two variables.
Taking the partial of f with respect to y in (53) yields

of _ 99
oy Oy’
Thus, comparing (51) and (54),

99 _
E)y_y

(54)

(55)
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It follows from (55) that

g(z,y) = y; + h(2), for (y,z) € R?, (56)

where h: R — R is some C! function of a single variable.

Next, substitute the expression for g in (56) into the expression for f in
(53) to get

2 P
flzyy,2) = ) + 5 + h(z), forall (z,y,z2) € R®. (57)

Taking the partial derivative with respect to z on both sides of (57) yields

U .2 = (), forall (ay,2) € B (5)

Comparing the expressions for the partial derivative of f with respect to
z in (52) and (58) yields

h'(z) =2, forall z € R,

from which we get that

2

h(z) = % te  forall z €R, (59)

where ¢ is some constant of integration.

Substituting the expression for h in (59) in the right-hand side of the
expression for f in (57) then yields

2

T 2
2

+ec, forall (z,y,2) € R? (60)

2
Y z
+_
2

f(Q?,y,Z): +5

and some constant c. 0
Let C' be parametrized by a C! path connecting the point P,(1, -1, —2)

to the point P;(—1,1,2). Compute the line integral / rdr+ydy+zdz.
c

Solution: 1t follows from the result on part (a) of this problem that

/xdx+ydy+zdz:/ df,
c c
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where f is any of the functions given in (60). Consequently, by the funda-
mental theorem of Calculus,

/Cx de +y dy + z dz = f(P) — f(P,). (61)

Using the definition of f in (60), we compute
f(P) =f(-1,1,2) =3+¢

and
f(PO) :f(17_17_2) =3+c

Consequently, in view of (61),

/xd:v+ydy+zdz:0.
c

O

(c) Let C denote any simple closed curve in R3. Evaluate the line integral

/xdx+ydy+zdz.
c

Solution: Let o: [0,1] — R?® be a parametrization of C' with o(0) = P,
and o(1) = P;. Then, since C' is a closed curve, P, = P,; so that,

f(h) = f(F).

It then follows from the formula in (61) that

/a:dx—l—ydy—l—zdzzo.
c

12. Let R denote the square, R = {(z,y) e R®* |0 <z <1, 0 <y < 1}, and OR
denote the boundary of R oriented in the counterclockwise sense. Evaluate the
line integral

/ (y? +2%) do + 2* dy.
OR

Solution: Apply Green’s theorem,

Pdr+Q dy = 0@ _or dzdy,
f JL(5-5)
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where, in this case,
Pz,y) =y*—2* and Q(z,y) =" for (z,y) € R?%

so that,

/ (> + %) de + 2t dy = / / (42° — 2y) dzxdy, (62)
OR R

Evaluating the double integral in (62) we obtain that

1 1
/(y2+x3) de + 2t dy = //(4x3—2y) dxdy
OR o Jo
1

= / [x4—2xy](l) dy

0

= /01(1—2y) dy

= [y-v];

= 0.



