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Solutions to Review Problems for Final Exam

1. In this problem, u and v denote vectors in Rn.

(a) Use the triangle inequality to derive the inequality

| ‖v‖ − ‖u‖ | 6 ‖v − u‖ for all u, v ∈ Rn. (1)

Solution: Write
‖u‖ = ‖(u− v) + v‖

and applying the triangle inequality to obtain

‖u‖ 6 ‖u− v‖+ ‖v‖,

from which we get that

‖u‖ − ‖v‖ 6 ‖v − u‖. (2)

Interchanging the roles for u and v in (2) we obtain

‖v‖ − ‖u‖ 6 ‖u− v‖.

from which we get
‖v‖ − ‖u‖ 6 ‖v − u‖. (3)

Combining (2) and (3) yields

−‖v − u‖ 6 ‖v‖ − ‖u‖ 6 ‖v − u‖,

which is (1). �

(b) Use the inequality derived in the previous part to show that the function
f : Rn → R given by f(v) = ‖v‖, for all v ∈ Rn, is continuous in Rn.

Solution: Fix u ∈ Rn and apply the inequality in (1) to any v ∈ Rn to
obtain that

|‖v‖ − ‖u‖| 6 ‖v − u‖,
or

|f(v)− f(u)| 6 ‖v − u‖. (4)

Next, apply the Squeeze Lemma to obtain from (4) that

lim
‖v−u‖→0

|f(v)− f(u)| = 0,

which shows that f is continuous at u for any u ∈ Rn. �
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(c) Prove that the function g : Rn → R given by g(v) = sin(‖v‖), for allv ∈ Rn,
is continuous.

Solution: Observe that g = sin ◦f , where f : Rn → R is as defined in
part (b). Thus, g is the composition of two continuous functions, and is,
therefore, continuous. �

2. Define the scalar field f : Rn → R by f(v) = ‖v‖2 for all v ∈ Rn.

(a) Show that f is differentiable in Rn and compute the linear map

Df(u) : Rn → R for all u ∈ Rn.

What is the gradient of f at u for all u ∈ Rn?

Solution: Let u ∈ Rn and compute

f(u+ w) = ‖u+ w‖2

= (u+ w) · (u+ w)

= u · u+ u · w + w · u+ w · w

= ‖u‖2 + 2u · w + ‖w‖2,

for w ∈ Rn, where we have used the symmetry of the dot product and the
fact that ‖v‖2 = v · v for all v ∈ Rn. We therefore have that

f(u+ w) = f(u) + 2u · w + ‖w‖2, for all u ∈ Rn and w ∈ Rn. (5)

Writing
Df(u)w = 2u · w, for all u ∈ Rn and w ∈ Rn, (6)

and
Eu(w) = ‖w‖2, for all u ∈ Rn and w ∈ Rn, (7)

we see that (5) can be rewritten as

f(u+ w) = f(u) +Df(u)w + Eu(w), for all u ∈ Rn and w ∈ Rn, (8)

where, according to (6), Df(u) : Rn → Rn defines a linear transformation,
and, by virtue of (7),

|Eu(w)|
‖w‖

= ‖w‖, for w 6= 0,
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from which we get that

lim
‖w‖→0

|Eu(w)|
‖w‖

= 0.

Consequently, in view of (8), we conclude that f is differentiable at every
u ∈ Rn, derivative at u given by (6).

Since Df(u)w = ∇f(u) ·w, for all u and w in Rn, by comparing with (6),
we see that

∇f(u) = 2u, for all u ∈ Rn.

�

Alternate Solution: Alternatively, for u = (x1, x2, . . . , xn) ∈ Rn, we
have that

f(u) = x21 + x22 + · · ·+ x2n;

so that
∂f

∂xj
(u) = 2xj, for j = 1, 2, . . . , n.

Thus, all the partial derivatives of f are continuous on Rn; that is, f is a
C1 function. Consequently, f is differentiable on Rn. Furthermore,

Df(u)w =
(
2x1 2x2 · · · 2xn

)
w, for all w ∈ Rn,

which can be written as

Df(u)w = 2u · w, for all w ∈ Rn. (9)

It then follows that ∇f(u) = 2u for all u ∈ Rn. �

(b) Let v̂ denote a unit vector in Rn. For a fixed vector u in Rn, define
g : R→ R by g(t) = ‖u− tv̂‖2, for all t ∈ R. Show that g is differentiable
and compute g′(t) for all t ∈ R.

Solution: Observe that g = f ◦ σ, where σ : R→ Rn is given by

σ(t) = u− tv̂, for all t ∈ R. (10)

Thus, σ is a differentiable path with

σ′(t) = −v̂, for all t ∈ R. (11)

Thus, by the result from part (a), g is the composition of two differentiable
functions. Consequently, by the Chain Rule, g is differentiable with

g′(t) = Df(σ(t))σ′(t), for all t ∈ R. (12)
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Thus, using (9) and (11), we obtain from (12) that

g′(t) = 2σ(t) · (−v̂), for all t ∈ R,

or
g′(t) = −2σ(t) · v̂, for all t ∈ R. (13)

Thus, using (10), we obtain from (13) that

g′(t) = −2(u− tv̂) · v̂, for all t ∈ R,

which leads to
g′(t) = 2t− 2u · v̂, for all t ∈ R, (14)

since v̂ is a unit vector in Rn. �

(c) Let v̂ be as in the previous part. For any u ∈ Rn, give the point on the
line spanned by v̂ which is the closest to u. Justify your answer.

Solution: It follows from (14) that g′′(t) = 2 > 0 for all t ∈ R; so that g
has a global minimum when g′(t) = 0. We then obtain from (14) that g(t)
is the smallest possible when

t = u · v̂.

Consequently, the point on the line spanned by v̂ that is the closest to u
is (u · v̂)v̂, or the orthogonal projection of u onto the direction of v̂. �

3. Let I denote an open interval which contains the real number a. Assume that
σ : I → Rn is a C1 parametrization of a curve C in Rn. Define s : I → R as
follows:

s(t) = arlength along the curve C from σ(a) to σ(t), (15)

for all t ∈ I.

(a) Give a formula, in terms of an integral, for computing s(t) for all t ∈ I.

Answer:

s(t) =

∫ t

a

‖σ′(τ)‖ dτ, for all t ∈ I. (16)

�
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(b) Prove that s is differentiable on I and compute s′(t) for all t ∈ I. Deduce
that s is strictly increasing with increasing t.

Solution: It follows from the assumption that σ is C1, the Fundamental
Theorem of Calculus, and (16), that s is differentiable and

s′(t) = ‖σ′(t)‖, for all t ∈ I. (17)

Since we are also assuming that σ is a parametrization of a C1 curve, C,
it follows that σ′(t) 6= 0 for all t ∈ I. Consequently, we obtain from (17)
that

s′(t) > 0, for all t ∈ I,

which shows that s(t) is strictly increasing with increasing t. �

(c) Let ` denote the arclength of C, and suppose that γ : [0, `] → Rn is a a
parametrization of C with the arclength parameter s defined in (15); so
that,

C = {γ(s) | 0 6 s 6 `}.

Use the fact that σ(t) = γ(s(t)), for all t ∈ [a, b], to show γ′(s) is a unit
vector that is tangent to the curve C at the point γ(s).

Solution: Note that σ = γ ◦ s is a composition of two differentiable
functions, by the result of part (b). Consequently, by the chain rule,

σ′(t) =
ds

dt
γ′(s), for t ∈ (a, b).

Thus, using (16),

σ′(t) = ‖σ′(t)‖γ′(s), for t ∈ (a, b).

So, using the fact that ‖σ′(t)‖ > 0 for all t ∈ (a, b),

γ′(s) =
1

‖σ′(t)‖
σ′(t), for t ∈ (a, b),

which shows that γ′(s) is a unit vector that is tangent to the curve C at
the point γ(s). �
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4. Let I denote an open interval of real numbers and f : I → R be a differentiable
function. Let a, b ∈ I be such that a < b, and define C to the section of the
graph of y = f(x) from the point (a, f(a)) to the point (b, f(b)); that is,

C = {(x, y) ∈ R2 | y = f(x) and a 6 x 6 b}

(a) By providing an appropriate parametrization of C, compute the arclenth
of C, `(C).

Solution: Parametrize C by σ : [a, b]→ R2 given by

σ(t) = (t, f(t)), for a 6 t 6 b.

Then,
σ′(t) = (1, f ′(t)), for a 6 t 6 b;

so that
‖σ′(t)‖ =

√
1 + [f ′(t)]2, for a 6 t 6 b.

Therefore,

`(C) =

∫ b

a

√
1 + [f ′(t)]2 dt. (18)

�

(b) Let f(x) = 5− 2x3/2, for x > 0. Compute the exact arcength of y = f(x)
over the interval [0, 11].

Solution: We use the formula in (18) with

f ′(t) = −3t1/2, for t > 0.

Thus,

`(C) =

∫ 11

0

√
1 + 9t dt

=

[
2

27
(1 + 9t)3/2

]11
0

=
2

27
(1000− 1)

= 74.

�
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5. Let Φ: R2 → R2 denote the map from the uv–plane to the xy–plane given by

Φ

(
u
v

)
=

(
2u
v2

)
for all

(
u
v

)
∈ R2, (19)

and let T be the oriented triangle [(0, 0), (1, 0), (1, 1)] in the uv–plane.

(a) Show that Φ is differentiable and give a formula for its derivative, DΦ(u, v),

at every point

(
u
v

)
in R2.

Solution: Write

Φ

(
u
v

)
=

(
f(u, v)
g(u, v)

)
for all

(
u
v

)
∈ R2,

where f(u, v) = 2u and g(u, v) = v2 for all

(
u
v

)
∈ R2. Observe that the

partial derivatives of f and g exist and are given by

∂f

∂u
(u, v) = 2,

∂f

∂v
(u, v) = 0

∂g

∂u
(u, v) = 0,

∂g

∂v
(u, v) = 2v.

Note that the partial derivatives of f and g are continuous. Therefore,
Φ is a C1 map. Hence, Φ is differentiable on R2 and its derivative map
at (u, v), for any (u, v) ∈ R2, is given by multiplication by the Jacobian
matrix

DΦ(u, v) =

(
2 0
0 2v

)
;

that is,

DΦ(u, v)

(
h
k

)
=

(
2 0
0 2v

)(
h
k

)
=

(
2h
2vk

)
for all

(
h
k

)
∈ R2. �

(b) Give the image, R, of the triangle T under the map Φ, and sketch it in the
xy–plane.

Solution: The image of T under Φ is the set

Φ(T ) = {(x, y) ∈ R2 | x = 2u, y = v2, for some (u, v) ∈ R}

= {(x, y) ∈ R2 | 0 6 x 6 2, 0 6 y 6 x2/4}.



Math 67. Rumbos Fall 2019 8

x

y

R
y = x2/4

Figure 1: Sketch of Region Φ(T )

A sketch of R = Φ(T ) is shown in Figure 1.

To see how the sketch in Figure 1 is obtained, refer to the sketch of the
triangle T in the uv–plane shown in Figure 2.

We first see where the boundary of T gets mapped by the transforma-
tion Φ. Note the boundary of T consists of three straight line segments
[(0, 0), (1, 0)], [(1, 0), (1, 1)] and [(1, 1), (0, 0)] oriented according a counter-
clockwise orientation along the boundary of T . The straight line segment
[(0, 0), (1, 0)] can be parametrized by

u = t, v = 0, for 0 6 t 6 1 (20)

Applying map Φ in (19) to the parametric equations in (20) we obtain

Φ

(
t
0

)
=

(
2t
0

)
for 0 6 t 6 1,

which yields the parametric equations

x = 2t, y = 0, for 0 6 t 6 1,

or the straight line segment [(0, 0), (2, 0)] in the xy–plane shown in Figure
1.

Similarly, the straight line segment [(1, 0), (1, 1)] in the uv–plane can be
parametrized by the equations

u = 1, v = t, for 0 6 t 6 1.

Applying the map Φ yields

Φ

(
1
t

)
=

(
2
t2

)
for 0 6 t 6 1;
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so that, the straight line segment [(1, 0), (1, 1)] in the uv–plane gets mapped
to the a set in the xy–plane with parametric equations

x = 2, y = t2, for 0 6 t 6 1,

which is a parametrization of the straight line segment [(2, 0), (2, 1)] shown
in Figure 1.

Finally, the segment [(1, 1), (0, 0)] in the uv–plane can be parametrized by

u = 1− t, v = 1− t, for 0 6 t 6 1.

Applying the mapping Φ then yields

Φ

(
1− t
1− t

)
=

(
2(1− t)
(1− t)2

)
for 0 6 t 6 1,

from which we get the parametric equations

x = 2(1− t)2, y = (1− t)2, for 0 6 t 6 1. (21)

Squaring on both sides of the first equation in (21) yields

x2 = 4(1− t)2, for 0 6 t 6 1,

and, comparing this with the second equation in (21), we obtain

x2 = 4y,

from which we get that

y =
1

4
x2, for 0 6 x 6 2. (22)

we have therefore shown that the function Φ maps the straight line segment
[(1, 1), (0, 0)] to the portion of the graph of the equation in (22) from (0, 0)
to (2, 1) in the xy–plane as shown in Figure 1. �

(c) Evaluate the integral

∫∫
R

dxdy, where R is the region in the xy–plane

obtained in part (b).
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Solution: Compute by means of iterated integrals∫∫
R

dxdy =

∫ 2

0

∫ x2/4

0

dy dx

=

∫ 2

0

x2

4
dx

=

[
x3

12

]2
0

=
2

3
.

�

(d) Evaluate the integral

∫∫
T

| det[DΦ(u, v)]| dudv, where det[DΦ(u, v)] de-

notes the determinant of the Jacobian matrix of Φ obtained in part (a).
Compare the result obtained here with that obtained in part (c).

Solution: Compute det[DΦ(u, v)] to get

det[DΦ(u, v)] = 4v.

so that ∫∫
T

| det[DΦ(u, v)]|dudv =

∫∫
T

4|v| dudv,

where the region T , in the uv–plane is sketched in Figure 2. Observe that,

u

v

T
�
�

�
�
�
�v = u

Figure 2: Sketch of Region T

in that region, v > 0, so that∫∫
T

| det[DΦ(u, v)]|dudv =

∫∫
T

4v dudv,
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Compute by means of iterated integrals∫∫
T

| det[DΦ(u, v)]|dudv =

∫ 1

0

∫ u

0

4v dvdu

=

∫ 1

0

2u2 du

=
2

3
,

which is the same result as that obtained in part (c). �

6. Consider the iterated integral

∫ 1

0

∫ 1

x2

x
√

1− y2 dydx.

(a) Identify the region of integration, R, for this integral and sketch it.

Solution: The region R = {(x, y) ∈ R2 | x2 6 y 6 1, 0 6 x 6 1} is
sketched in Figure 3. �

x

y

R
y = x2

Figure 3: Sketch of Region R

(b) Change the order of integration in the iterated integral and evaluate the

double integral

∫
R

x
√

1− y2 dxdy.

Solution: Compute∫∫
R

x
√

1− y2 dxdy =

∫ 1

0

∫ √y
0

x
√

1− y2 dxdy

=

∫ 1

0

[
x2

2

√
1− y2

]√y
0

dy

=

∫ 1

0

y

2

√
1− y2 dy.
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Next, make the change of variables u = 1− y2 to obtain that∫∫
R

x
√

1− y2 dxdy = −1

4

∫ 0

1

√
u du

=
1

4

∫ 1

0

√
u du

=
1

6
.

�

7. Let f : R→ R denote a twice–differentiable real valued function and define

u(x, t) = f(x− ct) for all (x, t) ∈ R2,

where c is a real constant.

Verify that
∂2u

∂t2
= c2

∂2u

∂x2
.

Solution: Apply the chain rule to obtain

∂u

∂x
= f ′(x− ct) · ∂

∂x
(x− ct) = f ′(x− ct).

Similarly,
∂2u

∂x2
= f ′′(x− ct), (23)

∂u

∂t
= f ′(x− ct) · ∂

∂t
(x− ct) = −cf ′(x− ct),

and
∂2u

∂t2
= c2f ′′(x− ct). (24)

Combining (23) and (24) we see that

∂2u

∂t2
= c2f ′′(x− ct) = c2

∂2u

∂x2
,

which was to be verified. �
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8. What is the region R over which you integrate when evaluating the iterated
integral ∫ 2

1

∫ x

1

x√
x2 + y2

dy dx?

Rewrite this as an iterated integral first with respect to x, then with respect to
y. Evaluate this integral. Which order of integration is easier?

Solution: The region R = {(x, y) ∈ R2 | 1 6 y 6 x, 1 6 x 6 2} is sketched in
Figure 4. Interchanging the order of integration, we obtain that

x

y

R
�
�

�
�
�
�

y = x

Figure 4: Sketch of Region R

∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

∫ 2

y

x√
x2 + y2

dxdy. (25)

The iterated integral in (25) is easier to evaluate; in fact,∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

∫ 2

y

x√
x2 + y2

dxdy

=

∫ 2

1

[√
x2 + y2

]2
y
dy

=

∫ 2

1

[√
4 + y2 −

√
2 y
]
dy.
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We therefore get that∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

√
4 + y2 dy −

√
2

∫ 2

1

y dy. (26)

Evaluating the second integral on the right–hand side of (26) yields∫ 2

1

y dy =
3

2
. (27)

The first integral on the right–hand side of (26) can be evaluated using the
integration formula∫ √

a2 + u2 du =
u

2

√
a2 + u2 +

a2

2
ln |u+

√
a2 + u2|+ C,

with a = 2, to obtain∫ 2

1

√
4 + y2 dy =

[
y

2

√
4 + y2 +

4

2
ln
∣∣∣y +

√
4 + y2

∣∣∣]2
1

,

which evaluates to∫ 2

1

√
4 + y2 dy = 2

√
2−
√

5

2
+ 2 ln

(
2 +
√

8

1 +
√

5

)
. (28)

Substituting (27) and (28) into (26) we obtain∫∫
R

x√
x2 + y2

dxdy =

√
2

2
−
√

5

2
+ 2 ln

(
2 +
√

8

1 +
√

5

)
.

�

9. Let f : R→ R denote a twice–differentiable real valued function and define

u(x, y) = f(r) where r =
√
x2 + y2 for all (x, y) ∈ R2.

(a) Define the vector field F (x, y) = ∇u(x, y). Express F in terms of f ′ and
r.

Solution: Compute

F (x, y) = ∇u(x, y) =
∂u

∂x
î+

∂u

∂y
ĵ, (29)
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where, by the chain rule,

∂u

∂x
= f ′(r)

∂r

∂x
(30)

and
∂u

∂y
= f ′(r)

∂r

∂y
. (31)

To compute
∂r

∂x
and

∂r

∂x
, write

r2 = x2 + y2, (32)

and differentiate with respect to x on both sides of (32) to obtain

2r
∂r

∂x
= 2x,

from which we get

∂r

∂x
=
x

r
, for (x, y) 6= (0, 0). (33)

Similarly,
∂r

∂y
=
y

r
, for (x, y) 6= (0, 0). (34)

Substituting (33) into (30) yields

∂u

∂x
=
f ′(r)

r
x. (35)

Similarly, substituting (34) into (31) yields

∂u

∂y
=
f ′(r)

r
y. (36)

Next, substitute (35) and (36) into (29) to obtain

F (x, y) =
f ′(r)

r
(x î+ y ĵ), (37)

�
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(b) Express the divergence of the gradient of u, in terms of f ′, f ′′ and r.

The expression div(∇u) is called the Laplacian of u, and is denoted by ∆u
or ∇2u.

Solution: From (37) we obtain that

P (x, y) =
f ′(r)

r
x and Q(x, y) =

f ′(r)

r
y,

so that, applying the product rule, the chain rule and quotient rule,

∂P

∂x
=

f ′(r)

r
+ x

d

dr

[
f ′(r)

r

]
∂r

∂x

=
f ′(r)

r
+ x

rf ′′(r)− f ′(r)
r2

x

r
,

(38)

where we have also used (33). Simplifying the expression in (38) yields

∂P

∂x
=

f ′(r)

r
+ x2

f ′′(r)

r2
− x2 f

′(r)

r3
. (39)

Similar calculations lead to

∂Q

∂y
=

f ′(r)

r
+ y2

f ′′(r)

r2
− y2 f

′(r)

r3
. (40)

Adding the results in (39) and (40), we then obtain that

divF =
∂P

∂x
+
∂Q

∂y

= 2
f ′(r)

r
+ r2

f ′′(r)

r2
− r2 f

′(r)

r3
,

(41)

where we have used (32). Simplifying the expression in (41), we get that

divF = f ′′(r) +
f ′(r)

r
.

�

10. Let f(x, y) = 4x− 7y for all (x, y) ∈ R2, and g(x, y) = 2x2 + y2.



Math 67. Rumbos Fall 2019 17

y

1

x1/
√

2

Figure 5: Sketch of ellipse

(a) Sketch the graph of the set C = g−1(1) = {(x, y) ∈ R2 | g(x, y) = 1}.
Solution: The curve C is the graph of the equation

x2

1/2
+ y2 = 1,

which is sketched in Figure 5. �

(b) Show that at the points where f has an extremum on C, the gradient of
f is parallel to the gradient of g.

Solution: Let σ : [0, 2π]→ R2 denote the C1 parametrization of C given
by

σ(t) =

(√
2

2
cos t, sin t

)
, for all t ∈ [0, 2π].

We then have that
g(σ(t)) = 1, for all t. (42)

Differentiating on both sides of (42) yields that

∇g(σ(t)) · σ′(t) = 0, for all t,

where we have applied the Chain Rule, which shows that ∇g(x, y) is per-
pendicular to the tangent vector to C at (x, y).
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Next, suppose that f(σ(t)) has a critical point at to. Then, the derivative
of f(σ(t)) at to is 0; that is,

∇f(σ(to)) · σ′(t0) = 0,

where we have applied the Chain Rule. It then follows that ∇f(xo, yo) is
perpendicular to the tangent vector to C at a critical point (xo, yo). Hence,
∇f(xo, yo) must be parallel to ∇g(xo, yo). �

(c) Find the largest and the smallest value of f on C.

Solution: By the result of part (b), at a critical point, (x, y), of f on C,
it must be the case that

∇g(x, y) = λ∇f(x, y), (43)

for some non–zero real number λ, where

∇f(x, y) = 4 î− 7 ĵ, (44)

and
∇g(x, y) = 4x î+ 2y ĵ. (45)

Substituting (44) and (45) into (43) yields the pair of equations

x = λ (46)

and
2y = −7λ. (47)

Substituting the expressions for x and y in (46) and (47), respectively, into
the equation of the ellipse

2x2 + y2 = 1,

yields that
57

4
λ2 = 1,

from which we get that

λ = ±2
√

57

57
. (48)

The values for λ in (48), together with (46) and (47), yield the critical
points (

2
√

57

57
,−7
√

57

57

)
and

(
−2
√

57

57
,

7
√

57

57

)
. (49)



Math 67. Rumbos Fall 2019 19

Evaluating the function f at each of the critical points in (49) we obtain
that

f

(
2
√

57

57
,−7
√

57

57

)
=
√

57 and f

(
−2
√

57

57
,

7
√

57

57

)
= −
√

57.

Consequently, the largest value of f on C is
√

57 and the smallest value is
−
√

57. �

11. In this problem we consider the line integral

∫
C

x dx+ y dy+ z dz, where C is

any piece–wise C1 curve in R3.

(a) If possible, find a C1 function, f , such that df = x dx+ y dy + z dz.

Solution: We look for a C1 function f : R3 → R such that df = x dx +
y dy + z dz, where

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

We then have that
∂f

∂x
= x, (50)

∂f

∂y
= y, (51)

and
∂f

∂z
= z. (52)

It follows from (50) that

f(x, y, z) =
x2

2
+ g(x, y), for all (x, y, z) ∈ R3, (53)

where g : R2 → R is some C1 function of two variables.

Taking the partial of f with respect to y in (53) yields

∂f

∂y
=
∂g

∂y
. (54)

Thus, comparing (51) and (54),

∂g

∂y
= y. (55)
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It follows from (55) that

g(x, y) =
y2

2
+ h(z), for (y, z) ∈ R2, (56)

where h : R→ R is some C1 function of a single variable.

Next, substitute the expression for g in (56) into the expression for f in
(53) to get

f(x, y, z) =
x2

2
+
y2

2
+ h(z), for all (x, y, z) ∈ R3. (57)

Taking the partial derivative with respect to z on both sides of (57) yields

∂f

∂z
(x, y, z) = h′(z), for all (x, y, z) ∈ R3. (58)

Comparing the expressions for the partial derivative of f with respect to
z in (52) and (58) yields

h′(z) = z, for all z ∈ R,

from which we get that

h(z) =
z2

2
+ c, for all z ∈ R, (59)

where c is some constant of integration.

Substituting the expression for h in (59) in the right–hand side of the
expression for f in (57) then yields

f(x, y, z) =
x2

2
+
y2

2
+
z2

2
+ c, for all (x, y, z) ∈ R3, (60)

and some constant c. �

(b) Let C be parametrized by a C1 path connecting the point Po(1,−1,−2)

to the point P1(−1, 1, 2). Compute the line integral

∫
C

x dx+ y dy+ z dz.

Solution: It follows from the result on part (a) of this problem that∫
C

x dx+ y dy + z dz =

∫
C

df,
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where f is any of the functions given in (60). Consequently, by the funda-
mental theorem of Calculus,∫

C

x dx+ y dy + z dz = f(P1)− f(Po). (61)

Using the definition of f in (60), we compute

f(P1) = f(−1, 1, 2) = 3 + c

and
f(Po) = f(1,−1,−2) = 3 + c.

Consequently, in view of (61),∫
C

x dx+ y dy + z dz = 0.

�

(c) Let C denote any simple closed curve in R3. Evaluate the line integral∫
C

x dx+ y dy + z dz.

Solution: Let σ : [0, 1] → R3 be a parametrization of C with σ(0) = Po

and σ(1) = P1. Then, since C is a closed curve, P1 = Po; so that,

f(P1) = f(Po).

It then follows from the formula in (61) that∫
C

x dx+ y dy + z dz = 0.

�

12. Let R denote the square, R = {(x, y) ∈ R2 | 0 6 x 6 1, 0 6 y 6 1}, and ∂R
denote the boundary of R oriented in the counterclockwise sense. Evaluate the
line integral ∫

∂R

(y2 + x3) dx+ x4 dy.

Solution: Apply Green’s theorem,∮
∂R

P dx+Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy,
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where, in this case,

P (x, y) = y2 − x3 and Q(x, y) = x4, for (x, y) ∈ R2;

so that, ∫
∂R

(y2 + x3) dx+ x4 dy =

∫∫
R

(4x3 − 2y) dxdy, (62)

Evaluating the double integral in (62) we obtain that∫
∂R

(y2 + x3) dx+ x4 dy =

∫ 1

0

∫ 1

0

(4x3 − 2y) dxdy

=

∫ 1

0

[
x4 − 2xy

]1
0
dy

=

∫ 1

0

(1− 2y) dy

=
[
y − y2

]1
0

= 0.

�


