Assignment \#18

Due on Monday April 14, 2008
Read Section 5.4 on The Poisson Distribution, pp. 255-262, in DeGroot and Schervish. Read Section 5.6 on The Normal Distribution, pp. 268-279, in DeGroot and Schervish.

Background and Definitions

Definition (Convergence in Distribution). Let $\left(X_{n}\right)$ be a sequence of random variables with cumulative distribution functions $F_{X_{n}}$, for $n=1,2,3, \ldots$, and Y be a random variable with cdf F_{Y}. We say that the sequence $\left(X_{n}\right)$ converges to Y in distribution, if

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{Y}(x)
$$

for all x where F_{Y} is continuous. The distribution of Y is usually called the limiting distribution of the sequence $\left(X_{n}\right)$.

Theorem (mgf Convergence Theorem). Let (X_{n}) be a sequence of random variables with moment generating functions $\psi_{x_{n}}(t)$ for $|t|<h, n=1,2,3, \ldots$, and some positive number h. Suppose Y has mgf $\psi_{Y}(t)$ which exists for $|t|<h$. Then, if

$$
\lim _{n \rightarrow \infty} \psi_{X_{n}}(t)=\psi_{Y}(t), \quad \text { for }|t|<h
$$

it follows that

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{Y}(x)
$$

for all x where F_{Y} is continuous.

Do the following problems

1. Let a denote a real number and X_{a} be a discrete random variable with pmf

$$
p_{X_{a}}(x)= \begin{cases}1 & \text { if } x=a \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Compute the cdf for X_{a} and sketch its graph.
(b) Compute the mgf for X_{a} and determine $E\left(X_{a}\right)$ and $\operatorname{var}\left(X_{a}\right)$.
2. Let $\left(X_{k}\right)$ denote a sequence of independent identically distributed random variables such that $X_{k} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ for every $k=1,2, \ldots$, and for some $\mu \in \mathbb{R}$ and $\sigma>0$. For each $n \geqslant 1$, define

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

(a) Determine the mgf, $\psi_{\bar{x}_{n}}(t)$, for \bar{X}_{n}, and compute $\lim _{n \rightarrow \infty} \psi_{\bar{x}_{n}}(t)$.
(b) Find the limiting distribution of \bar{X}_{n} as $n \rightarrow \infty$. (Hint: Compare your answer in part (a) to your answer in part (b) of problem 1.)
3. Let $\left(X_{k}\right)$ and \bar{X}_{n} be defined as in the previous problem. Define $Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$ for all $n \geqslant 1$.
(a) Determine the mgf, $\psi_{Z_{n}}(t)$, for Z_{n}, and compute $\lim _{n \rightarrow \infty} \psi_{Z_{n}}(t)$.
(b) Find the limiting distribution of Z_{n} as $n \rightarrow \infty$.
4. Let $\left(Y_{n}\right)$ be a sequence of discrete random variables having pmfs

$$
p_{Y_{n}}(y)= \begin{cases}1 & \text { if } y=n \\ 0 & \text { elsewhere }\end{cases}
$$

Compute the mgf of Y_{n} for each $n=1,2,3, \ldots$
Does $\lim _{n \rightarrow \infty} \psi_{Y_{n}}(t)$ exist for any t in an open interval around 0 ?
Does the sequence $\left(Y_{n}\right)$ have a limiting distribution? Justify your answer.
5. Let $q=0.95$ denote the probability that a person, in certain age group, lives at least 5 years.
(a) If we observe 60 people from that group and assume independence, what is the probability that at least 56 of them live 5 years or more?
(b) Find and approximation to the result of part (a) using the Poisson distribution.

