Solutions to Assignment $#17$

1. Prove that if $ad - bc \neq 0$, then the matrix $A =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible and compute A^{-1} .

Solution: Let
$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
 and assume that $ad - bc \neq 0$.

First consider the case $a \neq 0$. Perform the elementary row operations: $(1/a)R_1 \rightarrow R_1$ and $-cR_1 + R_2 \rightarrow R_2$, successively, on the augmented matrix

$$
\left(\begin{array}{ccc|c} a & b & | & 1 & 0 \\ c & d & | & 0 & 1 \end{array}\right),\tag{1}
$$

we obtain the augmented matrix

$$
\left(\begin{array}{ccc|c} 1 & b/a & 1/a & 0 \\ 0 & -(cb/a) + d & -c/a & 1 \end{array}\right),
$$

or

$$
\left(\begin{array}{ccccc}\n1 & b/a & | & 1/a & 0 \\
0 & \Delta/a & | & -c/a & 1\n\end{array}\right),\n\tag{2}
$$

where we have set $\Delta=ad-bc;$ thus $\Delta\neq 0.$ Next, perform the elementary row operation $\frac{a}{\lambda}$ $\frac{a}{\Delta}R_2 \to R_2$ on the augmented matrix in (2) to get

$$
\left(\begin{array}{ccccc}\n1 & b/a & | & 1/a & 0 \\
0 & 1 & | & -c/\Delta & a/\Delta\n\end{array}\right).
$$
\n(3)

Finally, perform the elementary row operation $-\frac{b}{b}$ $\frac{a}{a}R_2 + R_1 \rightarrow R_1$ on the augmented matrix in (3) to get

$$
\left(\begin{array}{ccccc} 1 & 0 & | & d/\Delta & -b/\Delta \\ 0 & 1 & | & -c/\Delta & a/\Delta \end{array}\right). \tag{4}
$$

From (4) we then see that, if $\Delta = ad - bc \neq 0$, then A is invertible and $\overline{ }$

$$
A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix},
$$

$$
A^{-1} = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.
$$
 (5)

or

Observe that the formula for A^{-1} in (5) also works for the case $a = 0$. In this case, $\Delta = -bc$; so that $b \neq 0$ and $c \neq 0$, and

$$
A^{-1} = \frac{1}{-bc} \begin{pmatrix} d & -b \\ -c & 0 \end{pmatrix},
$$

or

$$
A^{-1} = \begin{pmatrix} -d/bc & 1/c \\ 1/b & 0 \end{pmatrix},
$$

and we can check that

$$
\begin{pmatrix} -d/bc & 1/c \\ 1/b & 0 \end{pmatrix} \begin{pmatrix} 0 & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
$$

and therefore A is invertible in this case as well. \Box

- 2. Let A, B and C denote matrices in $\mathbb{M}(m,n)$. Prove the following statements regarding row equivalence.
	- (a) A is row equivalent to itself.

Solution: Observe that $IA = A$, and I is an elementary matrix since it is obtained from I by performing, for instance, the elementary row operation: $(1)R_1 \rightarrow R_1$.

(b) If A is row equivalent to B, then B is row equivalent to A.

Solution: If A is row equivalent to B, then there exist elementary matrices, $E_1, E_2, \ldots, E_k \in \mathbb{M}(m, m)$ such that

$$
E_k E_{k-1} \cdots E_2 E_1 A = B. \tag{6}
$$

Since all elementary matrices are invertible, $E_1^{-1}, E_2^{-1}, \ldots E_k^{-1}$ exist. These are also elementary matrices. Multiplying on the left of both sides of (6) by E_k^{-1} k^{-1} yields

$$
E_k^{-1}(E_k E_{k-1} \cdots E_2 E_1 A) = E_k^{-1} B.
$$

Applying the associative property we then get

$$
E_{k-1} \cdots E_2 E_1 A = E_k^{-1} B. \tag{7}
$$

We can continue in this fashion multiplying successively by

$$
E_{k-1}^{-1},\ldots,E_2^{-1},E_1^{-1}
$$

on the left of both sides of (7) then yields

$$
A = E_1^{-1} E_2^{-1} \cdots E_{k-1}^{-1} E_k^{-1} B,
$$

which shows that B is row equivalent to A , since inverses of elementary matrices as elementary matrices. \Box

(c) If A is row equivalent to B and B is row equivalent to C, then A is row equivalent to C.

> **Solution:** Assume that A is row equivalent to B and B is row equivalent to C . Then, there exist elementary matrices,

$$
E_1, E_2, \ldots, E_k, F_1, F_2, \ldots, E_\ell \in \mathbb{M}(m, m)
$$

such that

$$
E_k E_{k-1} \cdots E_2 E_1 A = B,\tag{8}
$$

and

$$
F_{\ell}F_{\ell-1}\cdots F_2F_1B=C.\tag{9}
$$

Multiplying by F_1, F_2, \ldots, F_ℓ on the left in both sides of (8) successively then yields

$$
F_{\ell}F_{\ell-1}\cdots F_2F_1E_kE_{k-1}\cdots E_2E_1A=F_{\ell}F_{\ell-1}\cdots F_2F_1B,
$$

which in view of (9) then yields

$$
F_{\ell}F_{\ell-1}\cdots F_2F_1E_kE_{k-1}\cdots E_2E_1A=C.
$$

Hence, A is row equivalent to C .

Note: these properties are usually known as *reflexivity*, *symmetry* and *transi*tivity, respectively, and they define an *equivalence relation*.

3. Use Gaussian elimination to determine whether the matrix

$$
A = \begin{pmatrix} 1 & -4 & 1 \\ 0 & 3 & -1 \\ -3 & 0 & 1 \end{pmatrix}
$$

is invertible or not. If A is invertible, compute its inverse.

Math 60. Rumbos Spring 2009 4

Solution: Begin with the augmented matrix

$$
\begin{pmatrix} 1 & -4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & -1 & | & 0 & 1 & 0 \\ -3 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}.
$$
 (10)

Next, apply the elementary row operation $3R_1 + R_3 \rightarrow R_3$ on the augmented matrix (10) to get

$$
\left(\begin{array}{cccccc} 1 & -4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & -1 & | & 0 & 1 & 0 \\ 0 & -12 & 4 & | & 3 & 0 & 1 \end{array}\right).
$$
 (11)

Finally, apply the elementary row operation $4R_2 + R_3 \rightarrow R_3$ to the augmented matrix in (11) to get

$$
\left(\begin{array}{cccccc} 1 & -4 & 1 & | & 1 & 0 & 0 \\ 0 & 3 & -1 & | & 0 & 1 & 0 \\ 0 & 0 & 0 & | & 3 & 4 & 1 \end{array}\right), \tag{12}
$$

and observe that the matrix on the left–hand side of (12) cannot be the turned into the identity in $M(3,3)$ by elementary row operations. We therefore conclude that A is not invertible. \Box

- 4. Let A denote an $m \times n$ matrix.
	- (a) Show that if $m < n$, then A is singular.

Proof: Assume that $A \in \mathbb{M}(m, n)$ where $m < n$. Then,

$$
Ax=\mathbf{0}
$$

is a homogeneous system of m linear equations in n unknowns. Since there are more equations than unknowns, it follows from the Fundamental Theorem of Homogeneous Systems that $Ax = 0$ has nontrivial solutions. Hence, A is singular. \Box

(b) Prove that A is singular if and only if the columns of A are linearly dependent in \mathbb{R}^m .

Proof: Assume that $A \in \mathbb{M}(m, n)$ is singular and write $A = [v_1 \quad v_2 \quad \cdots \quad v_n],$ where v_1, v_2, \ldots, v_n are the columns of A. Consider the equation

$$
x_1v_1 + x_2v_2 + \dots + x_nv_n = \mathbf{0},\tag{13}
$$

which can be written in matrix form as

$$
Ax = 0.\t(14)
$$

Since A is singular, the matrix equation in (14) has a nontrivial solution and this implies that the vector equation in (13) has a nontrivial solution. Consequently, the columns of A are linearly dependent.

Conversely, if the columns of A are linearly dependent, then the vector equation in (13) has a nontrivial solution, which implies that the matrix equation $Ax = 0$ has a nontrivial solution and therefore A is singular. \square

5. Let A denote an $n \times n$ matrix. Prove that A is invertible if and only if A is nonsingular.

Proof: Assume that A is invertible. Then, A has a left–inverse, B. It then follows that the equation

 $Ax = 0$

has only the trivial solution and therefore A is nonsingular.

Conversely, suppose that A is nonsingular; then, the equation

 $Ax = 0$

has only the trivial solution. Consequently the columns of A are linearly independent and therefore they form a basis for \mathbb{R}^n . Denote the columns of A by $v_1, v_2, \ldots, v_n \in \mathbb{R}^n$. Then, any vector in \mathbb{R}^n is a linear combination of the vectors in $\{v_1, v_2, \ldots, v_n\}$. In particular, there exist c_{ij} , for $1 \leq i, j \leq n$, such that

$$
c_{11}v_1 + c_{21}v_2 + \cdots + c_{n1}v_n = e_1 \nc_{12}v_1 + c_{22}v_2 + \cdots + c_{n2}v_n = e_2 \vdots \vdots \vdots \nc_{1n}v_1 + c_{2n}v_2 + \cdots + c_{nn}v_n = e_1,
$$

where $\{e_1, e_2, \dots, e_n\}$ is the standard basis is \mathbb{R}^n . We then get that

$$
A \begin{pmatrix} c_{1,j} \\ c_{2j} \\ \vdots \\ c_{nj} \end{pmatrix} = e_j
$$

for $j = 1, 2, ..., n$. Consequently, if we set $C = [c_{ij}]$ for $1 \leq i, j \leq n$, we see that

$$
AC_j = e_j,
$$

where C_j is the j^{th} column of C ; in other words

$$
AC = [AC_1 \quad AC_2 \quad \cdots \quad AC_n] = [e_1 \quad e_2 \quad \cdots \quad e_n] = I.
$$

We have therefore shown that A has right–inverse, C .

Next, transpose the equation $AC = I$ to obtain

$$
(AC)^{T} = I^{T},
$$

or

$$
C^T A^T = I,
$$

which shows that A^T has a left–inverse. It then follows that A^T is invertible. Consequently, its transpose, $(A^T)^T = A$ is also invertible. \Box