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Solutions to Assignment #17

1. Prove that if ad − bc 6= 0, then the matrix A =

(
a b
c d

)
is invertible and

compute A−1.

Solution: Let A =

(
a b
c d

)
and assume that ad− bc 6= 0.

First consider the case a 6= 0. Perform the elementary row operations:
(1/a)R1 → R1 and −cR1 + R2 → R2, successively, on the augmented
matrix (

a b | 1 0
c d | 0 1

)
, (1)

we obtain the augmented matrix(
1 b/a | 1/a 0
0 −(cb/a) + d | −c/a 1

)
,

or (
1 b/a | 1/a 0
0 ∆/a | −c/a 1

)
, (2)

where we have set ∆ = ad− bc; thus ∆ 6= 0.

Next, perform the elementary row operation
a

∆
R2 → R2 on the aug-

mented matrix in (2) to get(
1 b/a | 1/a 0
0 1 | −c/∆ a/∆

)
. (3)

Finally, perform the elementary row operation − b

a
R2 + R1 → R1 on

the augmented matrix in (3) to get(
1 0 | d/∆ −b/∆
0 1 | −c/∆ a/∆

)
. (4)

From (4) we then see that, if ∆ = ad − bc 6= 0, then A is invertible
and

A−1 =

(
d/∆ −b/∆
−c/∆ a/∆

)
,

or

A−1 =
1

∆

(
d −b
−c a

)
. (5)
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Observe that the formula for A−1 in (5) also works for the case a = 0.
In this case, ∆ = −bc; so that b 6= 0 and c 6= 0, and

A−1 =
1

−bc

(
d −b
−c 0

)
,

or

A−1 =

(
−d/bc 1/c

1/b 0

)
,

and we can check that(
−d/bc 1/c

1/b 0

)(
0 b
c d

)
=

(
1 0
0 1

)
,

and therefore A is invertible in this case as well. �

2. Let A, B and C denote matrices in M(m, n). Prove the following statements
regarding row equivalence.

(a) A is row equivalent to itself.

Solution: Observe that IA = A, and I is an elementary ma-
trix since it is obtained from I by performing, for instance, the
elementary row operation: (1)R1 → R1. �

(b) If A is row equivalent to B, then B is row equivalent to A.

Solution: If A is row equivalent to B, then there exist elementary
matrices, E1, E2, . . . , Ek ∈M(m, m) such that

EkEk−1 · · ·E2E1A = B. (6)

Since all elementary matrices are invertible, E−1
1 , E−1

2 , . . . E−1
k ex-

ist. These are also elementary matrices. Multiplying on the left
of both sides of (6) by E−1

k yields

E−1
k (EkEk−1 · · ·E2E1A) = E−1

k B.

Applying the associative property we then get

Ek−1 · · ·E2E1A = E−1
k B. (7)

We can continue in this fashion multiplying successively by

E−1
k−1, . . . , E

−1
2 , E−1

1
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on the left of both sides of (7) then yields

A = E−1
1 E−1

2 · · ·E−1
k−1E

−1
k B,

which shows that B is row equivalent to A, since inverses of ele-
mentary matrices as elementary matrices. �

(c) If A is row equivalent to B and B is row equivalent to C, then A is row
equivalent to C.

Solution: Assume that A is row equivalent to B and B is row
equivalent to C. Then, there exist elementary matrices,

E1, E2, . . . , Ek, F1, F2, . . . , E` ∈M(m, m)

such that
EkEk−1 · · ·E2E1A = B, (8)

and
F`F`−1 · · ·F2F1B = C. (9)

Multiplying by F1, F2, . . . , F` on the left in both sides of (8) suc-
cessively then yields

F`F`−1 · · ·F2F1EkEk−1 · · ·E2E1A = F`F`−1 · · ·F2F1B,

which in view of (9) then yields

F`F`−1 · · ·F2F1EkEk−1 · · ·E2E1A = C.

Hence, A is row equivalent to C. �

Note: these properties are usually known as reflexivity, symmetry and transi-
tivity, respectively, and they define an equivalence relation.

3. Use Gaussian elimination to determine whether the matrix

A =

 1 −4 1
0 3 −1
−3 0 1


is invertible or not. If A is invertible, compute its inverse.
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Solution: Begin with the augmented matrix 1 −4 1 | 1 0 0
0 3 −1 | 0 1 0
−3 0 1 | 0 0 1

 . (10)

Next, apply the elementary row operation 3R1 + R3 → R3 on the
augmented matrix (10) to get 1 −4 1 | 1 0 0

0 3 −1 | 0 1 0
0 −12 4 | 3 0 1

 . (11)

Finally, apply the elementary row operation 4R2 + R3 → R3 to the
augmented matrix in (11) to get 1 −4 1 | 1 0 0

0 3 −1 | 0 1 0
0 0 0 | 3 4 1

 , (12)

and observe that the matrix on the left–hand side of (12) cannot be
the turned into the identity in M(3, 3) by elementary row operations.
We therefore conclude that A is not invertible. �

4. Let A denote an m× n matrix.

(a) Show that if m < n, then A is singular.

Proof: Assume that A ∈M(m, n) where m < n. Then,

Ax = 0

is a homogeneous system of m linear equations in n unknowns. Since
there are more equations than unknowns, it follows from the Fundamental
Theorem of Homogeneous Systems that Ax = 0 has nontrivial solutions.
Hence, A is singular.

(b) Prove that A is singular if and only if the columns of A are linearly depen-
dent in Rm.
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Proof: Assume that A ∈M(m, n) is singular and write A = [v1 v2 · · · vn],
where v1, v2, . . . , vn are the columns of A. Consider the equation

x1v1 + x2v2 + · · ·+ xnvn = 0, (13)

which can be written in matrix form as

Ax = 0. (14)

Since A is singular, the matrix equation in (14) has a nontrivial solution
and this implies that the vector equation in (13) has a nontrivial solution.
Consequently, the columns of A are linearly dependent.

Conversely, if the columns of A are linearly dependent, then the vector
equation in (13) has a nontrivial solution, which implies that the matrix
equation Ax = 0 has a nontrivial solution and therefore A is singular.

5. Let A denote an n × n matrix. Prove that A is invertible if and only if A is
nonsingular.

Proof: Assume that A is invertible. Then, A has a left–inverse, B. It then
follows that the equation

Ax = 0

has only the trivial solution and therefore A is nonsingular.

Conversely, suppose that A is nonsingular; then, the equation

Ax = 0

has only the trivial solution. Consequently the columns of A are linearly in-
dependent and therefore they form a basis for Rn. Denote the columns of A
by v1, v2, . . . , vn ∈ Rn. Then, any vector in Rn is a linear combination of the
vectors in {v1, v2, . . . , vn}. In particular, there exist cij, for 1 6 i, j 6 n, such
that

c11v1 + c21v2 + · · ·+ cn1vn = e1

c12v1 + c22v2 + · · ·+ cn2vn = e2
...

...
...

c1nv1 + c2nv2 + · · ·+ cnnvn = e1,

where {e1, e2, · · · , en} is the standard basis is Rn. We then get that

A


c1,j

c2j
...

cnj

 = ej
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for j = 1, 2, . . . , n. Consequently, if we set C = [cij] for 1 6 i, j 6 n, we see
that

ACj = ej,

where Cj is the jth column of C; in other words

AC = [AC1 AC2 · · · ACn] = [e1 e2 · · · en] = I.

We have therefore shown that A has right–inverse, C.

Next, transpose the equation AC = I to obtain

(AC)T = IT ,

or
CT AT = I,

which shows that AT has a left–inverse. It then follows that AT is invertible.
Consequently, its transpose, (AT )T = A is also invertible.


