Handout \#2: The Real Numbers System Axioms

I. Field Axioms

The set of real numbers \mathbb{R} has two algebraic operations: addition (the sum of any two elements x and y of \mathbb{R} being denoted by $x+y$) and multiplication (the product of any two elements x and y of \mathbb{R} being denoted by $x y$) defined for any pair of elements in the set. These operations satisfy the properties of a field, which are the following:

Closure properties

$\left(F_{1}\right)$ For any two real numbers x and $y, x+y$ and $x y$ are real numbers.

Properties of addition

$\left(F_{2}\right)$ (Commutativity). For any x and y in \mathbb{R},

$$
x+y=y+x .
$$

$\left(F_{3}\right)$ (Associativity). For any three elements x, y, and z in \mathbb{R},

$$
(x+y)+z=x+(y+z) .
$$

$\left(F_{4}\right)$ (Existence of an additive identity). There exists a real number 0 with the property:

$$
x+0=x \quad \text { for all } x \text { in } \mathbb{R} .
$$

$\left(F_{5}\right)$ (Existence of additive inverses). For every x in \mathbb{R}, there exists y in \mathbb{R} with the property:

$$
x+y=0 .
$$

Properties of multiplication

$\left(F_{6}\right)$ (Commutativity). For any pair of real numbers x and y,

$$
x y=y x .
$$

$\left(F_{7}\right)$ (Associativity). For any three elements x, y, and z in \mathbb{R},

$$
(x y) z=x(y z)
$$

$\left(F_{8}\right)$ (Existence of an multiplicative identity). There exists a real number 1 such that $1 \neq 0$ and

$$
x \cdot 1=x \quad \text { for all } x \text { in } \mathbb{R}
$$

$\left(F_{9}\right)$ (Existence of multiplicative inverses for non-zero real numbers). For every x in \mathbb{R} such that $x \neq 0$, there exists y in \mathbb{R} such that

$$
x y=1 .
$$

Distributive property

$\left(F_{10}\right)$ For any real numbers x, y and z,

$$
x(y+z)=x y+x z
$$

II. Order Axioms

We designate a certain subset P of \mathbb{R} as the "positive numbers" in \mathbb{R}. This set P is "invariant" under the operations in \mathbb{R}; i.e., if x and y are in P, then $x+y$ and $x y$ are also in P. The set P induces an order relation in \mathbb{R} as follows: we say that $x<y$ if $y-x \in P$. The notation $x \leq y$ means $x<y$ or $x=y$. Similarly, we define $x>y$ to mean $x-y \in P$, and $x \geq y$ to mean $x>y$ or $x=y$.
The field \mathbb{R} is an ordered field since the following properties hold:
$\left(O_{1}\right)$ (Trichotomy property). If $x \in \mathbb{R}$, then $x=0$ or $x>0$ or $x<0$. (Note: only one of these three possibilities can hold.)
$\left(O_{2}\right)$ If $x>0$ and $y>0$, then $x+y>0$.
$\left(O_{3}\right)$ If $x>0$ and $y>0$, then $x y>0$.

III. Completeness Axiom

Let A be a subset of \mathbb{R}. We say that b is an upper bound for A if $x \leq b$ for all $x \in A$. A number c is called a least upper bound for A if c is an upper bound for A and $c \leq b$ for any upper bound b for A. The ordered field \mathbb{R} is said to be complete since it satisfies the following
(C) (Least upper bound property). Every non-empty subset of \mathbb{R} that has an upper bound has a least upper bound.

Remarks

1. Given $x \in \mathbb{R}$, the additive inverse for x given by the field axiom $\left(F_{5}\right)$ is unique and is denoted by $-x$. The expression $y-x$, for any pair of real numbers x and y, is then interpreted as $y+(-x)$.
2. Given a non-zero real number x, the multiplicative inverse for x given by the field axiom $\left(F_{9}\right)$ is unique and is denoted by x^{-1} or $\frac{1}{x}$. The expression $\frac{y}{x}$, for $x, y \in \mathbb{R}$ with $x \neq 0$, is then interpreted as $y x^{-1}$ or $y \frac{1}{x}$.
3. The set of rational numbers \mathbb{Q} is a sub-field of \mathbb{R}; that is, the field axioms $\left(F_{1}\right)$ $\left(F_{10}\right)$ hold true for \mathbb{Q} as well. The rational numbers are also an ordered field with the same order relation defined in \mathbb{R}. However, \mathbb{Q} is not a complete field.
