Exam 1 (Part I)

Wednesday, March 2, 2011

Name:	

This is the in–class part of Exam 1. It is a closed–notes and closed–book exam. Use your own paper and/or the paper provided for you. Please, provide complete solutions. Write you name on this page and staple it to your solutions. You have 75 minutes to work on the following 3 problems. Relax.

- 1. Let I denote and open interval of real numbers and U denote an open subset of \mathbb{R}^N . Suppose that $F: I \times U \to \mathbb{R}^N$ is continuous. Let $(t_o, p_o) \in I \times U$.
 - (a) State the local existence and uniqueness theorem for the IVP

$$\begin{cases}
\frac{dx}{dt} = F(t, x); \\
x(t_o) = p_o.
\end{cases}$$
(1)

(b) Let $I = \mathbb{R}$ and $U = \mathbb{R}$ and put $f(t, x) = 3tx^{1/3}$ for all $(t, x) \in I \times U$. Show that the IVP

$$\begin{cases} \frac{dx}{dt} = f(t, x); \\ x(0) = 0, \end{cases}$$

has more than one solution. Explain why this result does not contradict the local existence and uniqueness theorem stated in part (a).

2. Let U be an open subset of \mathbb{R}^N and $F: U \to \mathbb{R}^N$ be a C^1 vector field. For $p \in U$, let $u_p: J_p \to U$ be the unique solution to the IVP

$$\begin{cases}
\frac{dx}{dt} = F(x); \\
x(0) = p,
\end{cases} (2)$$

defined on a maximal interval of existence, J_p .

Suppose that there exist t_1 and t_2 in J_p such that $t_1 \neq t_2$ and

$$u_p(t_1) = u_p(t_2).$$

Prove that $u_p(t) = u_p(t + t_2 - t_1)$, for all $t \in J_p$.

- 3. Let U denote an open subset of \mathbb{R}^N and $F \colon U \to \mathbb{R}^N$ be a C^1 vector field defined on U.
 - (a) Define the flow domain, \mathcal{D} , of the field F.
 - (b) Define the flow map, $\theta \colon \mathcal{D} \to U$, of the field F.
 - (c) Let t > 0 and suppose that $(t, p) \in \mathcal{D}$. It was proved in class that for any T > t such that $(T, p) \in \mathcal{D}$, there exist positive constants, K and r = r(T), such that $\overline{B}_r(p) \subset U$ and $||q p|| \leq r$ implies that

$$\|\theta(t,q) - \theta(t,p)\| \le \|q - p\|e^{Kt}, \quad \text{for all } t \in [0,T].$$
 (3)

Use the estimate in (3) to prove that the flow map, $\theta \colon \mathcal{D} \to U$, is continuous on \mathcal{D} .

(d) When does the flow map, $\theta(t, p)$, define a continuous dynamical system?