Review Problems for Exam 1

1. Show that the IVP $\left\{\begin{aligned} \frac{d x}{d t} & =3 x^{2 / 3} ; \\ x(0) & =0,\end{aligned}\right.$ has more than one solution. Explain why this result does not contradict the local existence and uniqueness theorem proved in class.
2. Find the maximal interval of existence, J_{2}, of the IVP $\left\{\begin{aligned} \frac{d x}{d t} & =x^{3} ; \\ x(0) & =2 .\end{aligned}\right.$ If one of the endpoints of the interval J_{2} is finite, study the behavior of the solution $u=u(t)$ as t approaches that endpoint from within J_{2}. Explain your result in light of the Escape in Finite Time Theorem proved in class.
3. Show that the IVP $\left\{\begin{aligned} \frac{d x}{d t} & =\frac{1}{2 x} ; \\ x(1) & =1,\end{aligned}\right.$ has maximal interval of existence $J_{1}=$ $(0, \infty)$. Verify that the solution $u=u(t)$ is defined and continuous on $[0, \infty)$; however, u is not differentiable at 0 .
4. Let J denote an open interval of real numbers and suppose that f, g and h are continuous functions defined on J. Prove that the IVP

$$
\left\{\begin{array}{l}
\frac{d^{2} z}{d t^{2}}+g(t) \frac{d z}{d t}+h(t) z=f(t) \\
z\left(t_{o}\right)=p \\
z^{\prime}\left(t_{o}\right)=q
\end{array}\right.
$$

where $t_{o} \in J$ and p and q are real numbers, has a unique solutions defined on J. Prove also that solution $u(t, p, q)$ depends continuously on (p, q).
5. Find the dynamical, $\theta(t, p, q)$, for $(t, p, q) \in \mathbb{R}^{3}$, corresponding to the differential equations $\left\{\begin{aligned} \frac{d x}{d t} & =-x+y ; \\ \frac{d y}{d t} & =2 y .\end{aligned} \quad\right.$ Compute the orbit of the point $(1,3)$.
6. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $F\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-x \\ -y+x^{2} \\ z+x^{2}\end{array}\right)$, for all $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}$.
(a) Determine the flow domain, \mathcal{D}, of the vector field F, and compute the flow map, $\theta(t, p, q, r)$, for $(t, p, q, r) \in \mathcal{D}$.
(b) Let $V(t, p, q, r)=D \theta_{t}(t, p, q, r)$, where $\theta_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the map given by

$$
\theta_{t}(p, q, r)=\theta(t, p, q, r), \quad \text { for all }(p, q, r) \in \mathbb{R}^{3}
$$

and verify that the map $t \mapsto V(t, p, q, r)$ solves the matrix IVP

$$
\left\{\begin{aligned}
\frac{d Y}{d t} & =A(t, p, q, r) Y \\
Y(0) & =I
\end{aligned}\right.
$$

where $A(t, p, q, r)=D F(\theta(t, p, q, r))$.
7. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $F\binom{x}{y}=\binom{-x}{2 y+x^{2}}, \quad$ for all $\binom{x}{y} \in \mathbb{R}^{2}$.
(a) Determine the flow domain, \mathcal{D}, of the vector field F, and compute the flow map, $\theta(t, p, q)$, for $(t, p, q) \in \mathcal{D}$.
(b) Let $A=\left\{(p, q) \in \mathbb{R}^{2} \mid q=-p^{2} / 4\right\}$. Prove that A is invariant under the flow θ_{t}.
8. For $\omega>0$, the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \tag{1}\\
\frac{d y}{d t}=-\omega^{2} x
\end{array}\right.
$$

models a harmonic oscillator.
For a point (p, q) in the $x y$-plane, let $\gamma_{(p, q)}$ denote the orbit of (p, q) under the flow of the system in (1).
(a) Let $(x(t), y(t)) \in \gamma_{(p, q)}$ for all $t \in \mathbb{R}$. Verify that $\frac{d}{d t}\left[\omega^{2} x^{2}+y^{2}\right]=0$, for all $t \in \mathbb{R}$.
(b) Deduce from part (a) that $\gamma_{(p, q)}$ is the graph of $\omega^{2} x^{2}+y^{2}=C$, for some constant C. What is C in terms of p and q ?
(c) Sketch the graph of some typical orbits of the system in (1).

