Review Problems for Exam 1

1. Show that the IVP $\begin{cases} \frac{dx}{dt} = 3x^{2/3}; \\ x(0) = 0, \end{cases}$ has more than one solution. Explain

why this result does not contradict the local existence and uniqueness theorem proved in class.

- 2. Find the maximal interval of existence, J_2 , of the IVP $\begin{cases} \frac{dx}{dt} = x^3; \\ x(0) = 2. \end{cases}$ of the endpoints of the interval J_2 is finite, study the behavior of the solution u = u(t) as t approaches that endpoint from within J_2 . Explain your result in
- 3. Show that the IVP $\begin{cases} \frac{dx}{dt} = \frac{1}{2x}; \\ x(1) = 1, \end{cases}$ has maximal interval of existence $J_1 = x(0, \infty)$. Verify that the solution u = u(t) is defined and continuous on $[0, \infty)$; however, u is not differentiable at 0.

light of the Escape in Finite Time Theorem proved in class.

4. Let J denote an open interval of real numbers and suppose that f, g and h are continuous functions defined on J. Prove that the IVP

$$\begin{cases} \frac{d^2z}{dt^2} + g(t)\frac{dz}{dt} + h(t)z = f(t); \\ z(t_o) = p \\ z'(t_o) = q, \end{cases}$$

where $t_o \in J$ and p and q are real numbers, has a unique solutions defined on J. Prove also that solution u(t, p, q) depends continuously on (p, q).

5. Find the dynamical, $\theta(t,p,q)$, for $(t,p,q) \in \mathbb{R}^3$, corresponding to the differential equations $\begin{cases} \frac{dx}{dt} &= -x + y; \\ &\text{Compute the orbit of the point } (1,3). \\ \frac{dy}{dt} &= 2y. \end{cases}$

6. Let
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 be given by $F \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y + x^2 \\ z + x^2 \end{pmatrix}$, for all $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$.

- (a) Determine the flow domain, \mathcal{D} , of the vector field F, and compute the flow map, $\theta(t, p, q, r)$, for $(t, p, q, r) \in \mathcal{D}$.
- (b) Let $V(t, p, q, r) = D\theta_t(t, p, q, r)$, where $\theta_t : \mathbb{R}^3 \to \mathbb{R}^3$ is the map given by

$$\theta_t(p, q, r) = \theta(t, p, q, r), \quad \text{for all } (p, q, r) \in \mathbb{R}^3,$$

and verify that the map $t \mapsto V(t, p, q, r)$ solves the matrix IVP

$$\begin{cases} \frac{dY}{dt} = A(t, p, q, r)Y; \\ Y(0) = I, \end{cases}$$

where $A(t, p, q, r) = DF(\theta(t, p, q, r))$.

7. Let
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 be given by $F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ 2y + x^2 \end{pmatrix}$, for all $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.

- (a) Determine the flow domain, \mathcal{D} , of the vector field F, and compute the flow map, $\theta(t, p, q)$, for $(t, p, q) \in \mathcal{D}$.
- (b) Let $A = \{(p,q) \in \mathbb{R}^2 \mid q = -p^2/4\}$. Prove that A is invariant under the flow θ_t .
- 8. For $\omega > 0$, the system

$$\begin{cases} \frac{dx}{dt} = y; \\ \frac{dy}{dt} = -\omega^2 x, \end{cases}$$
 (1)

models a harmonic oscillator.

For a point (p,q) in the xy-plane, let $\gamma_{(p,q)}$ denote the orbit of (p,q) under the flow of the system in (1).

(a) Let $(x(t), y(t)) \in \gamma_{(p,q)}$ for all $t \in \mathbb{R}$. Verify that $\frac{d}{dt}[\omega^2 x^2 + y^2] = 0$, for all $t \in \mathbb{R}$.

- (b) Deduce from part (a) that $\gamma_{(p,q)}$ is the graph of $\omega^2 x^2 + y^2 = C$, for some constant C. What is C in terms of p and q?
- (c) Sketch the graph of some typical orbits of the system in (1).