Exam 2

Wednesday, April 27, 2011

Name: _____

This is a closed-notes and closed-book exam. Use your own paper and/or the paper provided for you. Please, provide complete answers. Write you name on this page and staple it to your work. You have 75 minutes to work on the following 4 problems. Relax.

Background and Notation

All the questions in this exam refer to the system

$$\frac{dx}{dt} = F(x),\tag{1}$$

where $F: U \to \mathbb{R}^N$ is a C^1 vector field defined on an open subset, U, of \mathbb{R}^N .

The function $u_p: J_p \to \mathbb{R}^N$ denotes the unique solution to the IVP

$$\begin{cases}
\frac{dx}{dt} = F(x); \\
x(0) = p,
\end{cases}$$
(2)

defined on the maximal interval of existence, J_p .

Answer the Following Questions

- 1. Let $V \colon U \to \mathbb{R}$ denote a C^1 function.
 - (a) Define the Lie derivative, $\dot{V} : U \to \mathbb{R}$, of V along the flow of F and explain its significance.
 - (b) State what it means for V to be a Liapunov function for the system in (1).
 - (c) Let x̄ ∈ U denote an equilibrium point of F. Give precise definitions for the following statements:
 (i) x̄ is isolated; (ii) x̄ is stable; (iii) x̄ is asymptotically stable; (iv) x̄ is unstable.
 - (d) Without proof, give conditions on V and \dot{V} that will guarantee that and isolated equilibrium point, \overline{x} , of F is
 - (i) stable; (ii) asymptotically stable; (iii) unstable.

- 2. Let p denote any point in U.
 - (a) Define the orbit, γ_p , of p under the flow of F.
 - (b) Give a precise definition of what it means for a subset of U to be invariant under the flow of F, and prove that γ_p is invariant.
 - (c) Define the ω -limit set, $\omega(\gamma_p)$, of γ_p and and give, without proof, a condition that will guarantee that $\omega(\gamma_p)$ is non-empty.
 - (d) Under the condition given in the previous part, give three properties of $\omega(\gamma_p)$, in addition to it being non-empty.
- 3. Let γ denote any orbit of the system in (1).
 - (a) State precisely what it means for γ to be a cycle.
 - (b) Without proof, state conditions that will guarantee that an orbit γ_p of the system in (1) is a cycle.
 - (c) Assume that γ is a cycle of the system in (1). Prove that $\omega(\gamma) = \gamma$.
 - (d) State what it means for a cycle, γ , to be isolated.
 - (e) State precisely what it means for an isolated cycle, γ , to be a limit cycle.
- 4. Let $V: U \to \mathbb{R}$ be a Liapunov function for the system in (1) over the open set U. Let $p \in U$ and denote by $u_p: J_p \to U$ the unique solution to the IVP in (2) defined on the maximal interval of exitence J_p . Suppose also that the set

$$\{u_p(t) \mid t \in J_p \cap [0,\infty)\}$$

is bounded.

- (a) Prove that $u_p(t)$ is defined for all $t \ge 0$.
- (b) Assume, in addition, that there exists a real constant, c, such that

$$\lim_{t \to \infty} V(u_p(t)) = c.$$

Prove that

$$V(\overline{y}) = c$$
, for all $\overline{y} \in \omega(\gamma_p)$.

Deduce then that

$$\dot{V}(\overline{y}) = 0$$
, for all $\overline{y} \in \omega(\gamma_p)$.