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Chapter 1

Motivation for the course

Imagine a ball whose center is at a fixed location in three–dimensional space, but
is free to rotate about its center around any axis through the center. The center
of the ball is not allowed to move away from its fixed location. Imagine that
we perform several rotations about various axes, one after the other. We claim
that there are two antipodal points on the surface of the ball which are exactly
at the same locations they were at the beginning of the process. Furthermore,
the combination of all the rotations that we perform has the same affect on the
ball as that of a single rotation performed about the axis going through the
fixed antipodal points. This result is know in the literature as Euler’s Theorem

�
��

��

��
�

�

on the Axis of Rotation (see [PPR09]).

One of the goals of this course will be the proof if this fact. We will require
all of the machinery of Linear Algebra to prove this result. The machinery
of Linear Algebra consists of a new language we need to learn, new concepts
we need to master and several theorems that we need to understand. The
language and concepts of Linear Algebra will help us find convenient ways to
represent rotations in space. Rotations, we will see, are special kinds of linear
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6 CHAPTER 1. MOTIVATION FOR THE COURSE

transformations, which are functions that map points in space to points in space
and which satisfy some special properties.

We have studied functions in Calculus already. In Calculus I and II we dealt
with real valued functions defined on intervals of the real line, R; in Calculus III,
we learned about functions which may be defined in regions of the plane, R2,
or three dimensional space, R3, and which may be real valued or vector valued
(also known as vector fields). In Linear Algebra we focus on a class of functions
which are defined in all of the space (one–, two–, or three–dimensional space,
or higher dimensional space) and can take on values in a one–dimensional or
higher–dimensional space. The functions we will deal with have the property
known as linearity. Loosely speaking, linearity means that the functions interact
nicely with the algebraic structure that the spaces on which the functions act
have: the structure of a linear space or a vector space.

The study of vector spaces will be one of the major topics of this course. We
begin our discussion of vector spaces by introducing the example of Euclidean
n–dimensional space. The main concepts of Linear Algebra will first be defined
in the context of Euclidean space and then will be presented in more general
context later on in the course.



Chapter 2

Euclidean n–dimensional
Space

2.1 Definition of n–Dimensional Euclidean Space

Euclidean space of dimension n, denoted by Rn in this course, will consist of
columns of real numbers of the form

x1
x2
...
xn

 .

These are called column vectors. In many textbooks elements of Rn are
denoted by row–vectors; in the lectures and homework assignments, we will use
column vectors to represents the elements in Rn. Vectors in Rn can be used
to locate points in n–dimensional space. They can also be used to indicate
displacements in a certain direction and through certain distance.

Example 2.1.1. Consider two–dimensional space, R2. This can be represented
by the familiar xy–plane pictured in Figure 2.1.1.

The vectors

(
1
2

)
and

(
2
−1

)
are represented in the figure as arrows, or

directed line segments, emanating from the origin of the xy–plane.

In the previous example, the vector

(
1
2

)
can be used to locate a point in the

xy–plane with coordinates (1, 2). However, it can also indicate a displacement
from the origin to the point (1, 2) through the straight line segment joining
them.

Notation (Vector Notation and Conventions). In the lectures and in these notes
we will use the symbols u, v, w, etc. to denote vectors. In several linear algebra
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8 CHAPTER 2. EUCLIDEAN N–DIMENSIONAL SPACE
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Figure 2.1.1: Two–dimensional Euclidean Space

texts, though, these symbols are usually written in boldface, u,v,w, etc., or
with an arrow on top of the letter, −→u ,−→v ,−→w , etc. In these notes, real numbers
will usually be denoted by the letters a, b, c, d, t, s, x, y, x, etc. and will be called
scalars in order to distinguish them from vectors. I will also try to follow my
own convention that if we are interested in locating a point in space, we will use
the row vector made up of the Cartesian coordinates of the point; for instance,
a point P in Rn will be indicated by P (x1, x2, . . . , xn), where x1, x2, . . . , xn are
the coordinates of the point.

As mentioned earlier, vectors in Rn can also be used to indicate displacement
along a straight line segment. For instance, the point P (x1, x2, . . . , xn) is located
by the vector

v =
−−→
OP =


x1
x2
...
xn

 ,

where O denotes the origin, or zero vector, in n–dimensional Euclidean space.
The arrow over the symbols OP emphasizes the “displacement” nature of the
vector v.

Example 2.1.2. Denote the vectors

(
1
2

)
and

(
2
−1

)
in Figure 2.1.1 by v1

and v2, respectively. Then, v1 and v2 locate the point P1(1, 2) and P2(2,−1),
respectively. See Figure 2.1.2. Note, however, that the arrow representing the
vector v2 in Figure 2.1.2 does not have to be drawn with its starting point at
the origin. It can be drawn anywhere as long as its length and direction are
the same (see Figure 2.1.2). We will still call it the vector v2. Only when the
base of the arrow representing v2 is located at the origin will it be locating the
point P2(2,−1). In all other instances, the vector v2 represents a displacement
parallel to that from the origin to the point (2,−1).
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Figure 2.1.2: Dual Nature of Vectors in Euclidean Space

2.2 Algebraic Structure on Euclidean Space

What makes Rn into a vector space are the algebraic operations that we will
define in this section. We begin with vector addition.

1. Vector Addition

Given v =


x1
x2
...
xn

 and w =


y1
y2
...
yn

 , the vector sum v + w or v and w is

v + w =


x1 + y1
x2 + y2

...
xn + yn


Example 2.2.1. Let v1 =

(
1
2

)
and v2 =

(
2
−1

)
. Then, the vector sum

of v1 and v2 is

v1 + v2 =

(
1 + 2
2− 1

)
=

(
3
1

)
.

Figure 2.2.3 shows a geometric interpretation of the vector sum of the
vectors v1 and v2 in the previous example. It is known as the parallelogram
rule: the arrow representing the vector v2 is drawn with its base at the
tip of the arrow representing the vector v1. The vector sum v1 +v2 is then
represented by the arrow going from the base of the arrow representing v1
to the tip of the translated arrow representing v2.

Notice that we could have obtained the same vector sum, v1 + v2, if,
instead of translating the arrow representing v2, we would have translated
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Figure 2.2.3: Parallelogram Rule

the arrow representing v1 to the tip of the arrow representing v2; see Figure
2.2.4
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Figure 2.2.4: Commutative Property for Vector Addition

The picture in Figure 2.2.4 illustrates the fact that

v1 + v2 = v2 + v1.

This is known as the commutative property of vector addition, which
can be derived algebraically from the definition and the fact that addition

of real numbers is commutative: for any vectors v =


x1
x2
...
xn

 and w =
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
y1
y2
...
yn

 in Rn,

w + v =


y1 + x1
y2 + x2

...
yn + xn

 =


x1 + y1
x2 + y2

...
xn + yn

 = v + w.

Properties of Vector Addition

Let u, v, w denote vectors in Rn. Then,

(a) Commutativity of Vector Addition

v + w = w + v

(b) Associativity of Vector Addition

(u+ v) + w = u+ (v + w)

Like commutativity, this property follows from the definition and the
fact that addition of real numbers is associative:

Write v =


x1
x2
...
xn

 , w =


y1
y2
...
yn

 and u =


z1
z2
...
zn

 . Then,

(u+ w) + v =


z1 + x1
z2 + x2

...
zn + xn

+


y1
y2
...
yn

 =


(z1 + x1) + y1
(z2 + x2) + y2

...
(zn + xn) + yn

 .

Thus, since (zi + xi) + yi = xi + (xi + yi), for each i = 1, 2, . . . , n, by
associativity of addition of real numbers, it follows that

(u+w)+v =


(z1 + x1) + y1
(z2 + x2) + y2

...
(zn + xn) + yn

 =


z1 + (x1 + y1)
z2 + (x2 + y2)

...
zn + (xn + yn)

 = u+(v+w).

(c) Existence of an Additive Identity

The vector 0 =


0
0
...
0

 in Rn has the property that

v + 0 = 0 + v = v for all v in Rn.
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This follows from the fact that x+ 0 = x for all real numbers x.

(d) Existence of an Additive Inverse

Given v =


x1
x2
...
xn

 in Rn, the vector w defined by v =


−x1
−x2

...
−xn

 has

the property that
v + w = 0.

The vector w is called an additive inverse of v.

2. Scalar Multiplication

Given a real number t, also called a scalar, and a vector v =


x1
x2
...
xn

 , the

scaling of v by t, denoted by tv, is given by

tv =


tx1
tx2
...
txn


Example 2.2.2. Given the vector v1 =

(
1
2

)
in R2, the scalar products(

−1

2

)
v1 and 3

2v1 are given by

(
−1

2

)
v1 =

(
−1/2
−1

)
and

3

2
v1 =

(
3/2

3

)
,

respectively. The arrows representing these vectors are shown in Figure
2.2.5. Observe that the arrows representing the scalar products of v1 lie
on the same line as the arrow representing v1.

Properties of Scalar Multiplication

(a) Associativity of Scalar Multiplication

Given scalars t and s and a vector v in Rn,

t(sv) = (ts)v.

This property follows from the definition of scalar multiplication and
the fact that s(tx) = (st)x for all real numbers x; that is, associativity
of multiplication of real numbers.
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Figure 2.2.5: Scalar Multiplication

(b) Identity in Scalar Multiplication

The scalar 1 has the property that

1 v = v for all v ∈ Rn.

3. Distributive Properties

Given vectors v and w in Rn, and scalars t and s,

(a) t(v + w) = tv + tw

(b) (t+ s)v = tv + sv.

These properties follow from the distributive properties for addition and
multiplication in the set of real numbers; namely

t(x+ y) = tx+ ty for all t, x, y ∈ R,

and

(t+ s)x = tx+ sx for all t, s, x ∈ R,

respectively.

2.3 Linear Combinations and Spans

Given a vector v in Rn, the set of all scalar multiples of v is called the span of
the set {v}. We denote the span of {v} by span({v}). In symbols, we write

span({v}) = {tv | t ∈ R}.

Geometrically, if v is not the zero vector in Rn, span{v} is the line through the
origin on Rn in the direction of the vector v.
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Example 2.3.1 (In R3). Let v =

1
2
1

 . Then,

span{v} =

t
1

2
1

∣∣∣ t ∈ R


We can also write this set as

span{v} =


xy
z

 ∈ Rn
∣∣∣
xy
z

 =

 t
2t
t

 , t ∈ R


Figure 2.3.6 shows a sketch of the line in R3 representing span{v}.

��
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Figure 2.3.6: Line in R3

Note that

xy
z

 is a vector on the line, span{v}, if and only if

xy
z

 =

 t
2t
t


for some scalar t. In other words,

xy
z

 is on the line if and only if the

coordinates x, y and z satisfy the equations x = t
y = 2t
z = t.
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These are known as the parametric equations of the line and t is called a
parameter.

Definition 2.3.2 (Linear Combinations). Given vectors v1, v2, . . . , vk in Rn,
the expression

c1v1 + c2v2 + · · ·+ ckvk,

where c1, c2, . . . , ck are scalars, is called a linear combination of the vectors
v1, v2, . . . , vk.

Definition 2.3.3 (Span). Given vectors v1, v2, . . . , vk in Rn, the collection of
all linear combinations of the vectors v1, v2, . . . , vk is called the span of the set
of vectors {v1, v2, . . . , vk}. We denote the span of {v1, v2, . . . , vk} by

span{v1, v2, . . . , vk}.

We then have that

span{v1, v2, . . . , vk} = {t1v1 + t2v2 + · · ·+ tkvk | t1, t2, . . . , tk ∈ R}.

Example 2.3.4. Consider the vectors v1 and v2 in R3 given by

v1 =

1
1
1

 and v2 =

1
0
2

 .

Let’s compute span{v1, v2}.

Solution: Write

span{v1, v2} = {c1v1 + c2v2 | c1, c2 ∈ R}

=

c1
1

1
1

+ c2

1
0
2

 ∣∣∣ c1, c2 ∈ R


=


c1c1
c1

+

 c2
0

2c2

 ∣∣∣ c1, c2 ∈ R


=


 c1 + c2

c1
c1 + 2c2

 ∣∣∣ c1, c2 ∈ R

 .

We then have that a vector

xy
z

 is in span{v1, v2} if and only if

xy
z

 =

 c1 + c2
c1

c1 + 2c2


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for some scalars c1 and c2; that is, if c1 + c2 = x
c1 = y
c1 + 2c2 = z.

Substituting the second equation, c1 = y, into the first and third equation leads
to the two equation {

y + c2 = x
y + 2c2 = z.

Solving for c2 in the first equation and substituting into the second yields the
single equation

2x− y − z = 0.

This is the equation of a plane through the origin in R3 and containing the
points with coordinates (1, 1, 1) and (1, 0, 2). �

In the previous example we showed that if a vector

xy
z

 is in the span,

W = span


1

1
1

 ,

1
0
2

 ,

of the vectors v1 =

1
1
1

 and v2 =

1
0
2

 in R3, then it determines a point

with coordinates (x, y, z) in R3 lying in the plane with equation 2x− y− z = 0.
Denote the plane by Q; that is,

Q =


xy
z

 ∈ R3
∣∣∣ 2x− y − z = 0

 .

Then, the previous example shows that W is a subset of Q. We write

W ⊆ Q,

meaning that every element in W is also an element in Q. We will presently
show that Q is also a subset of W ; that is, every point in the plane Q must also

be in the span of the vectors v1 =

1
1
1

 and v2 =

1
0
2

 .

Example 2.3.5. Let

W = span


1

1
1

 ,

1
0
2


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and

Q =


xy
z

 ∈ R3
∣∣∣ 2x− y − z = 0

 .

Show that Q ⊆W.

Solution: To show that Q is a subset of W , we need to show that every point

in the plane Q is a linear combination of the vectors v1 =

1
1
1

 and v2 =

1
0
2

 .

Thus, let

xy
z

 ∈ Q. Then,

2x− y − z = 0.

Solving for z in terms of x and y in the previous equation yields

z = 2x− y.

Thus, z depends on both x and y, which can be thought of as parameters. We
therefore set x = t and y = s, where t and s are parameters. We then have

that, if

xy
z

 ∈ Q, then  x = t
y = s
z = 2t− s.

In vector notation, we then have that, if

xy
z

 ∈ Q, then

xy
z

 =

 t
s

2t− s



=

 t
0
2t

+

 0
s
−s

 ,

where we have used the definition of vector addition in R3. Thus, using now
the definition of scalar multiplication, we get thatxy

z

 = t

1
0
2

+ s

 0
1
−1

 ,
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which shows that, if

xy
z

 ∈ Q, then

xy
z

 ∈ span


1

0
2

 ,

 0
1
−1

 = span

v2,
 0

1
−1

 .

In order to complete the proof that

xy
z

 ∈ span{v1, v2}, we will need to show

that the vector

 0
1
−1

 is in the span of the vectors v1 and v2; that is, we need

to find scalars c1 and c2 such that

c1v1 + c2v2 =

 0
1
−1

 ,

or  c1 + c2
c1

c1 + 2c2

 =

 0
1
−1

 .

This leads to the system of equations c1 + c2 = 0
c1 = 1
c1 + 2c2 = −1,

which has solution: c1 = 1, c2 = −1. Thus, 0
1
−1

 = v1 − v2.

Consequently, if

xy
z

 ∈ Q, then

xy
z

 = c1v2 + c2

 0
1
−1


for some scalars c1 and c2, by what we have seen in the first part of this proof.

Hence, since

 0
1
−1

 = v1 − v2, it follows that

xy
z

 = c1v2 + c2(v1 − v2) = c2v1 + (c2 − c1)v2,
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which is a linear combination of v1 and v2. Hence,xy
z

 ∈ Q⇒
xy
z

 ∈ span{v1, v2} = W.

We have therefore shown that Q ⊆W . �

The previous two examples show that the span of v1 and v2 is the same set
as the plane in R3 with equation 2x−y−z = 0. In other words, the combination
of the statements

W ⊆ Q and Q ⊆W

is equalivalent to the statement

W = Q.

2.4 Linear Independence

In the previous example we showed that the vector v3 =

 0
1
−1

 is in the span

of the set {v1, v2}, where

v1 =

1
1
1

 and v2 =

1
0
2

 .

When this happens (i.e., when one vector in the set is in the span of the other
vectors) we say that the set {v1, v2, v3} is linearly dependent. In general, we
have the following definition:

Definition 2.4.1 (Linear Dependence in Rn). A set of vectors, S, in Rn is said
to be linearly dependent if at least one of the vectors in S is a finite linear
combination of other vectors in S.

Example 2.4.2. We have already seen that the set S = {v1, v2, v3}, where

v1 =

1
1
1

 , v2 =

1
0
2

 , and v3 =

 0
1
−1

 ,

is a linearly dependent subset of R3 since

v3 = v1 − v2;

that is, v3 is in the span of the other vectors in S.
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Example 2.4.3. Let v1, v2, . . . , vk be any vectors in Rn. Then, the set

S = {0, v1, v2, . . . , vk},

where 0 denotes the zero vector in Rn, is linearly dependent since

0 = 0 · v1 + 0 · v2 + · · ·+ 0 · vk;

that is, 0 is in the span of the vectors v1, v2, . . . , vk.

If a subset, S, of Rn is not linear dependent, we say that it is linearly
independent.

Definition 2.4.4 (Linear Independence in Rn). A set of vectors, S, in Rn is
said to be linearly independent if it is not linearly dependent; that is, no
vector in S can be expressed as a linear combination of other vectors in S.

The following proposition gives an alternate characterization of linear inde-
pendence for a finite subset of Rn.

Proposition 2.4.5. The set S = {v1, v2, . . . , vk} of vectors in Rn is linearly
independent if and only if

c1 = 0, c2 = 0, . . . , ck = 0

is the only solution to the vector equation

c1v1 + c2v2 + · · ·+ ckvk = 0.

Remark 2.4.6. Note that it is not hard to see that c1 = 0, c2 = 0, . . . , ck = 0
is a solution to the equation

c1v1 + c2v2 + · · ·+ ckvk = 0. (2.1)

The solution c1 = 0, c2 = 0, . . . , ck = 0 is usually referred to as the trivial solu-
tion. Thus, linear independence is equivalent to the statement that the trivial
solution is the only solution to the equation in (2.1). Thus, linear dependence
of the set {v1, v2, . . . , vk} is equivalent to the statement that the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

has solutions in addition to the trivial solution.

Remark 2.4.7. The statement of Proposition 2.4.5 is a bi–conditional; that
is, it is the combination of the two implications:

1. If the set S = {v1, v2, . . . , vk} is linearly independent, then

c1 = 0, c2 = 0, . . . , ck = 0

is the only solution to the vector equation

c1v1 + c2v2 + · · ·+ ckvk = 0;
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2. Conversely, if

c1 = 0, c2 = 0, . . . , ck = 0

is the only solution to the vector equation

c1v1 + c2v2 + · · ·+ ckvk = 0,

then S = {v1, v2, . . . , vk} is linearly independent.

Thus, in order to prove Proposition 2.4.5, the two implications need to be es-
tablished.

We will now prove Proposition 2.4.5. This is the first formal proof that we
present in the course and will therefore be presented with lots of details in order
to illustrate how a mathematical argument is presented. Subsequent arguments
in these notes will not be as detailed as this one.

Proof of Proposition 2.4.5. We first prove that if the set S = {v1, v2, . . . , vk} is
linearly independent, then

c1 = 0, c2 = 0, . . . , ck = 0

is the only solution to the vector equation

c1v1 + c2v2 + · · ·+ ckvk = 0.

Suppose therefore that S is linearly independent. This means that no vector in
S is in the span of the other vectors in S.

We wish to prove that the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

has only the trivial solution

c1 = 0, c2 = 0, . . . , ck = 0.

If this is not the case, then there exist scalars c1, c2, . . . , ck, such not all of them
are zero and

c1v1 + c2v2 + · · ·+ ckvk = 0.

Suppose the non–zero scalar is cj , for some j in {1, 2, . . . , k}, and write

c1v1 + c2v2 + · · ·+ cj−1vj−1 + cjvj + cj+1vj+1 + · · ·+ ckvk = 0. (2.2)

We can solve for cjvj in equation (2.2) by adding on both sides the additive
inverses of the other vectors. Using the properties of vector addition we then
get that

cjvj = −c1v1 − c2v2 − · · · − cj−1vj−1 − cj+1vj+1 − · · · − ckvk,
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which, using now the properties of scalar multiplication can now be re–written
as

cjvj = (−c1)v1+(−c2)v2+· · ·+(−cj−1)vj−1+(−cj+1)vj+1+· · ·+(−ck)vk. (2.3)

Now, since cj 6= 0, 1/cj exists. We can then multiply both sides of equation (2.3)
by 1/cj , and using now the distributive properties and the associative property
for addition and scalar multiplication we obtain that

vj =

(
−c1
cj

)
v1 + · · ·+

(
−cj−1
cj

)
vj−1 +

(
−−cj+1

cj

)
vj+1 + · · ·+

(
−ck
cj

)
vk.

(2.4)
Equation (2.4) displays vj as a linear combination of v1, . . . , vj−1, vj+1, . . . , vk.
However, this is impossible since we are assuming that S is linearly independent
and therefore no no vector in S is in the span of the other vectors in S. This
contradiction then implies that the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

has only the trivial solution

c1 = 0, c2 = 0, . . . , ck = 0,

which we had set out to prove.
Next, we prove the converse statement: if

c1 = 0, c2 = 0, . . . , ck = 0

is the only solution to the vector equation

c1v1 + c2v2 + · · ·+ ckvk = 0, (2.5)

then S = {v1, v2, . . . , vk} is linearly independent.
Suppose that

c1v1 + c2v2 + · · ·+ ckvk = 0

has only the trivial solution

c1 = 0, c2 = 0, . . . , ck = 0.

Arguing by contradiction again, assume that S is not linearly independent.
Then, one of the vectors in S, say vj , is in the span of the other vectors in S;
that is, there exist scalars c1, c2, . . . , cj−1, cj+1, . . . , ck such that

vj = c1v1 + c2v2 + · · ·+ cj−1vj−1 + cj+1vj+1 + · · ·+ ckvk. (2.6)

Adding the additive inverse to both sides of equation (2.6) we obtain that

c1v1 + c2v2 + · · ·+ cj−1vj−1 − vj + cj+1vj+1 + · · ·+ ckvk = 0,
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which may be re–written as

c1v1 + c2v2 + · · ·+ cj−1vj−1 + (−1)vj + cj+1vj+1 + · · ·+ ckvk = 0. (2.7)

Since −1 6= 0, equation (2.7) shows that there is a non–trivial solution to the
equation

c1v1 + c2v2 + · · ·+ ckvk = 0.

This contradicts the assumption that the only solution to the equation in (2.5)
is the trivial one. Therefore, it is not the case that S is linearly dependent and
hence it must be linearly independent.

Proposition 2.4.5 is very useful in determining whether a given set of vectors,
{v1, v2, . . . , vk}, in Rn is linearly independent or not. According to Proposition
2.4.5, all we have to do is to solve the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

and determine whether it has one solution or more than one solution. In the
first case (only the trivial solution) we can conclude by virtue of Proposition
2.4.5 that the set is linearly independent. In the second case (more than one
solution), the set is linearly dependent.

Example 2.4.8. Determine whether the set


1

1
1

 ,

1
0
2

 ,

1
2
0

 is linearly

independent in R3 or not.

Solution: Consider the equation

c1

1
1
1

+ c2

1
0
2

+ c3

1
2
0

 =

0
0
0

 . (2.8)

This equation leads to the system of linear equations c1 + c2 + c3 = 0
c1 + 2c3 = 0
c1 + 2c2 = 0,

(2.9)

Solving for c3 in the first equation and substituting into the second equation
leads to the system of two equations{

−c1 − 2c2 = 0
c1 + 2c2 = 0.

(2.10)

Observe that the system of equations in (2.10) is really a single equation in two
unknowns

c1 + 2c2 = 0. (2.11)
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We can solve for c1 in equation (2.11) and c3 in the first equation 1n (2.9) to
obtain that

c1 = −2c2
c3 = c2,

(2.12)

which shows that the unknown scalars c1 and c3 depend on c2, which could
taken on arbitrarily any value. To stress the arbitrary nature of c2, let’s rename
it t, an arbitrary parameter. We then get from (2.12) that

c1 = −2t
c2 = t
c3 = t.

(2.13)

Since the parameter t in (2.13) is arbitrary, we see that the system in (2.9) has
infinitely many solutions. In particular, the vector equation (2.21) has non–
trivial solutions. It then follows by virtue of Proposition 2.4.5 that the set
1

1
1

 ,

1
0
2

 ,

1
2
0

 is linearly dependent. �

Example 2.4.9. Determine whether the set


1

1
1

 ,

1
0
2

 ,

0
0
1

 is linearly

independent in R3 or not.

Solution: Consider the equation

c1

1
1
1

+ c2

1
0
2

+ c3

0
0
1

 =

0
0
0

 . (2.14)

This equation leads to the system of linear equations c1 + c2 = 0
c1 + 2c3 = 0
c1 + 2c2 + c3 = 0,

(2.15)

Solving for c1 and c2 in the first two equations in (2.15) leads to

c1 = 0
c2 = 0.

Substituting for these in the third equation in (2.15) then leads to

c3 = 0.

We have therefore shown that the vector equation in (2.14) has only the trivial

solution. Consequently, by virtue of Proposition 2.4.5 that the set


1

1
1

 ,

1
0
2

 ,

0
0
1


is linearly independent. �
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Remark 2.4.10. In the previous two examples we have seen that the question
of whether a finite set of vectors in Rn is linearly independent or not leads to
the question of whether a system of equations, like those in (2.9) and (2.15), has
only the trivial solution or not. The systems in (2.9) and (2.15) are examples
of homogeneous systems. In general, a homogenous system of linear of m
equations in n unknowns is of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

... =
...

am1x1 + am2x2 + · · ·+ amnxn = 0,

(2.16)

where the x1, x2, . . . , xn are the unknowns, and aij , for i = 1, 2, . . . ,m and j =
1, 2, . . . , n, are known coefficients. We will study systems more systematically
later in the course and we will see that what is illustrated in the previous two
examples is what happens in general: either the linear homogenous system has
only the trivial solution, or it has infinitely many solutions.

2.5 Subspaces of Euclidean Space

In this section we study some special subsets of Euclidean space, Rn. These are
called subspaces and are defined as follows

Definition 2.5.1 (Subspaces of Rn). A non–empty subset, W , of Euclidean
space, Rn, is said to be a subspace of Rn iff

(i) v, w ∈W implies that v + w ∈W ; and

(ii) t ∈ R and v ∈W implies that tv ∈W .

If (i) and (ii) in Definition 2.5.1 hold, we say that the set W is closed under
the vector space operations in Rn. For this reason, properties (i) and (ii) are
usually referred to as closure properties.

There are many examples of subspaces of Rn; but there are also many ex-
amples of subsets of Rn which are not subspaces. We shall begin by presenting
a few examples of subsets which are not subspaces.

Example 2.5.2 (Subsets which are not subspaces).

1. The empty set, denoted by the symbol ∅, is not a subspace of any Euclidean
space by definition.

2. Consider the subset, S, of R2 given by the first quadrant in the xy–plane:

S =

{(
x
y

)
∈ R2

∣∣∣ x > 0, y > 0

}
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S is not a subspace since

(
1
1

)
∈ S, but

(−1)

(
1
1

)
=

(
−1
−1

)
is not in S because −1 < 0. That is, S is not closed under scalar multi-
plication.

3. Let S ⊆ R2 this time be given by

S =

{(
x
y

)
∈ R2

∣∣∣ xy > 0

}
.

In this case, S is closed under scalar multiplication, but it is not closed

under vector addition. To see why this is so, let

(
x
y

)
∈ S. Then, xy > 0.

Then, for any scalar t, note that

(tx)(ty) = t2xy > 0

since t2 > 0 for any real number t. Thus, S is closed under scalar mul-
tiplication. However, S is not closed under vector addition; to see this,
consider the vectors

v =

(
1
0

)
and w =

(
0
−1

)
.

Then, v and w are both in S since

1 · 0 = 0 · (−1) = 0.

However,

v + w =

(
1
−1

)
is not in S since 1 · (−1) = −1 < 0.

Example 2.5.3 (Subsets which are subspaces).

1. Let W = {0}; that is, W consists solely of the additive identity, 0, in Rn.
W is a subspace of Rn because

0 + 0 = 0 ∈W,

so that W is closed under vector addition; and

t · 0 = 0 ∈W for all t ∈ R;

that is, W is closed under scalar multiplication.
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2. W = Rn, the entire Euclidean space, is also a subspace of Rn.

3. Let W =


xy
z

 ∣∣∣ ax+ by + cz = 0

 , where a, b and c are real numbers,

is a subspace of R3.

Proof: Let v =

x1y1
z1

 and w =

x2y2
z2

 be in W . Then,

ax1 + by1 + cz1 = 0
ax2 + by2 + cz2 = 0.

Adding both equations yields

a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = 0,

where we have used the distributive property for real numbers. It then
follows that

v + w =

x1 + x2
y1 + y2
z1 + z2

 ∈W,
and so W is closed under vector addition in R3.

Next, multiply ax1 + by1 + cz1 = 0 on both sides by a scalar t and apply
the distributive and associative properties for real numbers to get that

a(tx1) + b(ty1) + c(tz1) = 0,

which show that

tv =

tx1ty1
tz1

 ∈W,
and therefore W is also closed with respect to scalar multiplication.

Hence, W is closed with respect to the vector space operations in R3; that
is, W is a subspace of Rn.

Let S = {v1, v2, . . . , vk} be a subset of Rn and put W = span(S). Then,
W is a subspace of Rn.

Proposition 2.5.4. Given a non–empty subset, S, of Rn, span(S) is a subspace
of Rn.
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Proof: Since S 6= ∅, there is a vector v ∈ S. Observe that v = 1 · v is a linear
combination of a vector from S; therefore, v ∈ span(S) and therefore span(S)
is non–empty.

Next, we show that span(S) is closed under the vector space operations of
Rn. Let v ∈ span(S); then, there exist vectors v1, v2, . . . , vk in S such that

v = c1v1 + c2v2 + · · ·+ ckvk

for some scalars c1, c2, . . . , ck. Thus, for any scalar t,

tv = t(c1v1 + c2v2 + · · ·+ ckvk)
= t(c1v1) + t(c2v2) + · · ·+ t(ckvk)
= (tc1)v1 + (tc2)v2 + · · ·+ (tck)vk,

which shows that tv is a linear combination of elements in S; that is, tv ∈
span(S). Consequently, span(S) is closed under scalar multiplication.

To show that span(S) is closed under vector addition, let v and w be in
span(S). Then, there exist vectors v1, v2, . . . , vk and w1, w2, . . . , wm in S such
that

v = c1v1 + c2v2 + · · ·+ ckvk

and
w = d1w1 + d2w2 + · · ·+ dmwm,

for for some scalars c1, c2, . . . , ck and d1, d2, . . . , dm. Thus,

v + w = c1v1 + c2v2 + · · ·+ ckvk + d1w1 + d2w2 + · · ·+ dmwm,

which is a linear combination of vectors in S. Therefore, v + w ∈ span(S).
We have therefore that span(S) is a non–empty subset of Rn which is closed

under the vector space operations in Rn; that is, span(S) is a subspace of Rn.

Proposition 2.5.5. Given a non–empty subset, S, of Rn, span(S) is the small-
est subspace of Rn which contains S; that is, is W is any subspace of Rn such
that S ⊆W , then span(S) ⊆W .

Proof: Let V denote the smallest subspace of Rn that contains S; that is,

(i) V is a subspace of Rn;

(ii) S ⊆ V ; and

(iii) for any subspace, W , of Rn such that S ⊆W , V ⊆W .

We show that
V = span(S).

By Proposition 2.5.4, span(S) is a subspace of Rn. Observe also that

S ⊆ span(S),
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since v ∈ S implies that v = 1 · v ∈ span(S). It then follows that

V ⊆ span(S), (2.17)

since V is the smallest subset of Rn which contains S. It remains to show then
that

span(S) ⊆ V.

Let v ∈ span(S); then, there exist vectors v1, v2, . . . , vk in S such that

v = c1v1 + c2v2 + · · ·+ ckvk

for some scalars c1, c2, . . . , ck. Now, since S ⊆ V , vi ∈ V for all i = 1, 2, . . . , k.
It then follows from the closure of V with respect to scalar multiplication that

civi ∈ V for all i− 1, 2, . . . , k.

Applying the closure of V with respect to vector addition we then get that

c1v1 + c2v2 + · · ·+ ckvk ∈ V ;

that is v ∈ V . We have then shown that

v ∈ span(S)⇒ v ∈ V ;

that is,

span(S) ⊆ V.

Combining this with (2.17), we conclude that span(S) = V ; that is, span(S) is
the smallest subspace of Rn which contains S.

Remark 2.5.6 (The Span of the Empty Set). In view of Proposition 2.5.5, it
makes sense to define

span(∅) = {0}.

Indeed, {0} is the smallest subset of Rn and ∅ ⊆ {0}.

2.6 Finitely Generated Subspaces

We have seen that for any subset, S, of Rn, span(S) is a subspace of Rn. If the
set S is finite, we will say that span(S) is a finitely generate subspace of Rn.

Definition 2.6.1 (Finitely Generated Subspaces). A subspace, W , of Rn is
said to be finitely generate iff W = span(S) for some finite subset S of Rn.

Example 2.6.2. Since {0} = span(∅), by definition, it follows that {0} is
finitely generated because ∅ is finite.
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Example 2.6.3. Let e1, e2, . . . , en be vectors in Rn given by

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .

We show that

Rn = span{e1, e2, . . . , en}. (2.18)

This will prove that Rn is finitely generated. To see why (2.18) is true, first
observe that

span{e1, e2, . . . , en} ⊆ Rn. (2.19)

Next, let


x1
x2
...
xn

 denote any vector in Rn. We then have that


x1
x2
...
xn

 =


x1
0
...
0

+


0
x2
...
0

+ · · ·+


0
0
...
xn



= x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1


= x1e1 + x2e2 + · · ·+ xnen,

which shows that


x1
x2
...
xn

 is in the span of {e1, e2, · · · , en}. Thus,

Rn ⊆ span{e1, e2, . . . , en}.

Combining this with (2.19) yields (2.18), which shows that Rn is finitely gener-
ated.

We will eventually show that all subspaces of Rn are finitely generated.
Before we do so, however, we need to make a short incursion into the theory of
systems of liner equations.
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2.7 Connections with the Theory of Systems Lin-
ear Equations

We have seen that the questions of whether a given set of vectors in Rm is
linearly independent can be translated into question of whether a homogeneous
system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

... =
...

am1x1 + am2x2 + · · ·+ amnxn = 0,

(2.20)

has only the trivial solution or many solutions. In this section we study these
systems in more detail. In particular, we will see that in the case m < n, then
the system (2.20) has infinitely many solutions. This result will imply that any
set of n vectors in Rm, where n > m, is linearly dependent. We will illustrate
this with an example in R2.

Example 2.7.1. Let v1 =

(
1
2

)
, v2 =

(
2
−1

)
and v3 =

(
1
1

)
. Show that the

set {v1, v2, v3} is linearly dependent.

Solution: Consider the equation

c1v1 + c2v2 + c3v3 = 0, (2.21)

where 0 denotes the zero–vector in R2 and c1, c2 and c3 are scalars. This vector
equation leads to the system of equations{

c1 + 2c2 + c3 = 0
2c1 − c2 + c3 = 0.

(2.22)

Solving for c1 in the first equation and substituting into the second equation
leads to the system {

c1 + 2c2 + c3 = 0
−5c2 − c3 = 0.

(2.23)

Observe that systems (2.22) and (2.23) have the same solutions since we simply
solved for one of the variables in one equation and substituted into the other.
Similarly, we can now solve for c2 in the second equation in (2.23) and substitute
for it in the first equation of the same system to get{

c1 + 3
5c3 = 0

−5c2 − c3 = 0.
(2.24)

We can then solve for c1 and c2 in system (2.24) to get{
c1 = − 3

5c3
c2 = − 1

5c3.
(2.25)
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The variables c1 and c2 in system (2.24) are usually called the leading variables
of the system; thus, the process of going from (2.24) to (2.25) is usually referred
to as solving for the leading variables.

System (2.25) shows that the leading variables, c1 and c2, depend on c3,
which is arbitrary. We may therefore define c3 = −5t, where t is an arbitrary
parameter to get the solutions c1 = 3t

c2 = t
c3 = −5t,

(2.26)

so that the solution spaces of system (2.22) is

W = span


 3

2
−5

 .

We therefore conclude that the vector equation (2.21) has non–trivial solutions
and therefore {v1, v2, v3} is linearly dependent. �

2.7.1 Elementary Row Operations

The process of going from system (2.22) to the system in (2.24) can also be
achieved by a procedure that uses elimination of variables instead of substitu-
tion. For instances, we can multiply the first equation in (2.22) by the scalar
−2, adding to the second equation and replacing the second equation by the
result leads to the system: {

c1 + 2c2 + c3 = 0
−5c2 − c3 = 0,

(2.27)

which is the same system that we got in (2.24). This procedure does not change
the solution space of the original system. In general, the solution space for the
pair of equations {

ai1x1 + ai2x2 + · · ·+ ainxn = 0
ak1x1 + ak2x2 + · · ·+ aknxn = 0

(2.28)

is the same as that of the pair{
ai1x1 + ai2x2 + · · ·+ ainxn = 0
(cai1 + ak1)x1 + (cai2 + ak2)x2 + · · ·+ (cain + akn)xn = 0,

(2.29)

where c is any scalar. To see why this is so, let


x1
x2
...
xn

 be a solution of system

(2.29); thus, from the second equation in the system,

(cai1 + ak1)x1 + (cai2 + ak2)x2 + · · ·+ (cain + akn)xn = 0.
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It then follows, using the distributive properties, that

cai1x1 + ak1x1 + cai2x2 + ak2x2 + · · ·+ cainxn + aknxn = 0.

Thus, by the associative properties and the distributive property again,

c(ai1x1 + ai2x2 + · · ·+ ainxn) + ak1x1 + ak2x2 + · · ·+ aknxn = 0.

Consequently, since


x1
x2
...
xn

 also satisfies the first equation in (2.29), we get that

ak1x1 + ak2x2 + · · ·+ aknxn = 0,

which is the second equation in (2.28). Hence,


x1
x2
...
xn

 is also a solution of

system (2.28). A similar argument shows that if


x1
x2
...
xn

 is also a solution of

system (2.28), then it is also a solution of system (2.29).
Adding a scalar multiple of one equation to another equation and replacing

the second equation by the resulting equation is an example of an elementary
row operation. Other elementary row operations are: (1) multiply an equation
by a no–zero scalar and replace the equation by the result of the scalar multiple,
and (2) swap two equations. It is clear that the later operation does not change
the solution space of the system; in the former operation, since the scalar is
non-zero, the solution space does not change either. To see why this is the case,

note that if


x1
x2
...
xn

 is a solution of

c(ai1x1 + ai2x2 + · · ·+ ainxn) = 0,

then, since c 6= 0, we see that

ai1x1 + ai2x2 + · · ·+ ainxn = 0.

We illustrate this by multiplying the second equation in (2.27) by −1/5 to get.{
c1 + 2c2 + c3 = 0

c2 + 1
5c3 = 0,

(2.30)
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The system in (2.30) is in what is known as row echelon form, in which the
leading variables c1 and c2 have 1 as coefficient.

We can perform a final row operation on the system in (2.30) by multiplying
the second equation in the system by the scalar −2 and adding to the first
equation to get {

c1 + 3
5c3 = 0

c2 + 1
5c3 = 0.

(2.31)

The system in (2.31) is said to be in reduced row echelon form. It can be
solved for the leading variables to yield the system in (2.25).

2.7.2 Gaussian Elimination

Observe that in going from system (2.22) to system (2.31) by performing ele-
mentary row operations in the equations, as outlined in the previous section,
the operations only affected the coefficients; the variables c1, c2 and c3 acted as
place–holders. It makes sense, therefore, to consider the coefficients only in or-
der to optimize calculations. The coefficients in each equation in system (2.22)
can be represented as rows in an array of numbers shown in equation(

1 2 1 | 0
2 −1 1 | 0

)
. (2.32)

The two–dimensional array in (2.32) is known as the augmented matrix for
the system (2.22). The elementary operations can then be performed on the rows
of the augmented matrix in (2.32) (hence the name, elementary row operations).
If we denote the rows first and second row in the matrix in (2.32) by R1 and
R2, respectively, we can denote and keep track of the row operations as follows:

−2R1 +R2 → R2 :

(
1 2 1 | 0
0 −5 −1 | 0

)
. (2.33)

−2R1 + R2 → R2 in (2.33) indicates that we have multiplied the first row in
(2.32) by −2, added the scalar product to the second, and replaced the second
row by the result. The rest of the operations can be indicated as follows:

(−1/5)R2 → R2 :

(
1 2 1 | 0
0 1 1/5 | 0

)
, (2.34)

and

−2R2 +R1 → R1 :

(
1 0 3/5 | 0
0 1 1/5 | 0

)
. (2.35)

The matrix in (2.34) is in row echelon form, and that in (2.35) is in reduced row
echelon form.

The process of going from an augmented matrix for a system to any of its row
echelon forms by performing elementary row operations is known as Gaussian
Elimination or Gauss–Jordan reduction. We will present here two more
examples in the context of determining whether a given set of vectors is linearly
independent or not.
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Example 2.7.2. Determine whether the set of vectors {v1, v2, v3} in R3, where

v1 =

 1
0
−1

 , v2 =

 2
5
1

 and v3 =

 0
−4

3

 ,

is linearly independent or not.

Solution: Consider the equation

c1

 1
0
−1

+ c2

 2
5
1

+ c3

 0
−4

3

 =

 0
0
0

 . (2.36)

This leads to the system  c1 + 2c2 = 0
5c2 − 4c3 = 0

−c1 + c2 + 3c3 = 0.
(2.37)

Starting with the augmented matrix 1 2 0 | 0
0 5 −4 | 0
−1 1 3 | 0

 , (2.38)

we perform the following elementary row operations on the matrix in (2.38):

R1 +R3 → R3

 1 2 0 | 0
0 5 −4 | 0
0 3 3 | 0

 ,

(1/5)R2 → R2

 1 2 0 | 0
0 1 −4/5 | 0
0 3 3 | 0

 ,

−3R2 +R3 → R3

 1 2 0 | 0
0 1 −4/5 | 0
0 0 27/5 | 0

 ,

and

(5/27)R3 → R3

 1 2 0 | 0
0 1 −4/5 | 0
0 0 1 | 0

 ,

where we have indicated the row operation by the row on which the operation
was performed. It then follows that the system in (2.37) is equivalent to the
system  c1 + 2c2 = 0

c2 − (4/5)c3 = 0
c3 = 0.

(2.39)
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System (2.39) is in row echelon form and can be solved to yield

c3 = c2 = c1 = 0.

Consequently, the vector equation (2.36) has only the trivial solution, and there-
fore the set {v1, v2, v3} is linearly independent. �

Example 2.7.3. Determine whether the set of vectors {v1, v2, v3} in R3, where

v1 =

 1
0
−1

 , v2 =

 2
5
1

 and v3 =

 0
5
3

 ,

is linearly independent or not.

Solution: Consider the equation

c1

 1
0
−1

+ c2

 2
5
1

+ c3

 0
5
3

 =

 0
0
0

 . (2.40)

This leads to the system  c1 + 2c2 = 0
5c2 + 5c3 = 0

−c1 + c2 + 3c3 = 0.
(2.41)

Starting with the augmented matrix 1 2 0 | 0
0 5 5 | 0
−1 1 3 | 0

 , (2.42)

we perform the following elementary row operations on the matrix in (2.42):

(1/5)R2 → R2

R1 +R3 → R3

 1 2 0 | 0
0 1 1 | 0
0 3 3 | 0

 ,

−3R2 +R3 → R3

 1 2 0 | 0
0 1 1 | 0
0 0 0 | 0

 ,

and
−2R2 +R1 → R1

 1 0 −2 | 0
0 1 1 | 0
0 0 0 | 0

 .

We then conclude that the system (2.41) is equivalent to the system{
c1 − 2c3 = 0

c2 + c3 = 0,
(2.43)
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which is in reduced row echelon form and can be solved for the leading variables
c1 and c2 to yield

c1 = 2t
c2 = −t
c3 = t,

where t is an arbitrary parameter. It then follows that the system in (2.41)
has infinitely many solutions; consequently, the vector equation in (2.40) has
nontrivial solutions and therefore the set {v1, v2, v3} is linearly dependent. �

Examples 2.7.2 and 2.7.3 illustrate what can happen in general when we
are solving homogeneous linear systems: either (1) the system has only the
trivial solution; or (2) the system has infinitely many solutions. In the case
in which there are infinitely many solutions, the system is equivalent to one in
which there are more unknowns than equations, as was the case in system (2.43)
Example 2.7.3. In the following section we prove that this is always the case: a
homogenous systems with more unknowns than equations has infinitely many
solutions.

2.7.3 The Fundamental Theorem of Homogenous Systems
of Linear Equations

The fundamental theorem for homogenous linear systems states that a homoge-
nous system of more unknowns than equations has a nontrivial solutions. This
is Theorem 1.5E in our text [TT70, pg. 16]. We present here slight variation of
that theorem:

Theorem 2.7.4 (Fundamental Theorem of Homogeneous Linear Systems). A
homogeneous system of m linear equations in n unknowns,

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = 0,

(2.44)

with n > m has infinitely many solutions.

Proof: Perform Gauss–Jordan reduction of the augmented matrix of the system
in (2.44) to obtain the equivalent augmented matrix

1 b12 b13 · · · b1k b1,k+1 · · · b1n | 0
0 1 b23 · · · b2k b2,k+1 · · · b2n | 0
...

...
...

...
...

...
...

... |
...

0 0 0 · · · 1 bk,k+1 · · · bkn | 0


in row–echelon form, where k 6 m. The previous system can be further reduced
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to 
1 0 0 · · · 0 b′1,k+1 · · · b′1n | 0

0 1 0 · · · 0 b′2,k+1 · · · b′2n | 0
...

...
...

...
...

...
...

... |
...

0 0 0 · · · 1 b′k,k+1 · · · b′kn | 0

 ,

which leads to the system
x1 + b′1,k+1xk+1 + b′1,k+2x3 + · · ·+ b′1nxn = 0

x2 + b2,k+1xk+1 + · · · + b2nxn = 0
...

...
...

xk + b′k,k+1xk+1 · · ·+ b′k,nxn = 0,

(2.45)

where k 6 m, equivalent to (2.44). We can solve for the leading variables,
x1, x2, . . . , xk in (2.45) in terms of xk+1, . . . , xn, which can be set to equal arbi-
trary parameters. Since n > m and k 6 m, there are n−k > 1 such parameters,
It follows that system (2.45) has infinitely many solutions. Consequently, (2.44)
has infinitely many solutions.

A consequence of the Fundamental Theorem 2.7.4 is the following Proposi-
tion which will play a crucial role in the study of subspaces of Rn in the next
section.

Proposition 2.7.5. Any set of vectors {v1, v2, . . . , vk} in Rn with k > n must
be linearly dependent.

Proof: Consider the vector equation

c1v1 + c2v2 + · · ·+ ckvk,= 0. (2.46)

Since the set {v1, v2, . . . , vk} is a subset of Rn, we can write

v1 =


a11
a21
a31
...
an1

 , v2 =


a12
a22
a32
...
an2

 , · · · , vk =


a1k
a2k
a3k
...
ank

 .

Hence, the vector equation in (2.46) translate into the homogeneous system
a11c1 + a12c2 + · · ·+ a1kck = 0
a21c1 + a22c2 + · · ·+ a2kck = 0

...
...

...
an1c1 + an2n2 + · · ·+ ankck = 0,

(2.47)

of n linear equations in k unknowns. Since k > n, the homogenous system in
(2.47) has more unknowns than equations. It then follows from the Fundamental
Theorem 2.7.4 that system (2.47) has infinitely many solutions. It then follows
that the vector equation in (2.46) has a nontrivial solution, and therefore, by
Proposition 2.4.5, the set {v1, v2, . . . , vk} is linearly dependent.
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Example 2.7.6. By Proposition 2.7.5, the set

S =


 1

1
−1

 ,

 0
2
1

 ,

 1
5
1

 ,

−1
5
4


is a linearly dependent subset of R3. We will now show how to find a subset of
S which is linearly independent and which also spans span(S).

Solution: Denote the elements of S by v1, v2, v3 and v4, respectively, and
consider the vector equation

c1v1 + c2v2 + c3v3 + c4v4 = 0. (2.48)

Since S is a linearly dependent, equation (2.48) has nontrivial solutions. Our
goal now is to find those nontrivial solutions to obtain nontrivial linear relations
between the elements of S which will allow us to express some of the vectors
as linear combinations of the other ones. Those vectors in S which can be
expressed as linear combinations of the others can be discarded. We perform
this procedure until we find a linearly independent subset of S which which also
spans span(S).

Equation (2.48) leads to the system c1 + c3 − c4 = 0
c1 + 2c2 + 5c3 + 5c4 = 0
−c1 + c2 + c3 + 4c4 = 0,

(2.49)

which has the augmented matrix

R1

R2

R3

 1 0 1 −1 | 0
1 2 5 5 | 0
−1 1 1 4 | 0

 .

Performing the elementary row operations −R1 +R2 → R2 and R1 +R3 → R3,
we obtain the augmented matrix: 1 0 1 −1 | 0

0 2 4 6 | 0
0 1 2 3 | 0

 .

Next, perform 1
2R2 → R2 and −R2 +R3 → R3 in succession to obtain 1 0 1 −1 | 0

0 1 2 3 | 0
0 0 0 0 | 0

 .

Hence, the system in (2.57) is equivalent to the system{
c1 + c3 − c4 = 0
c2 + 2c3 + 3c4 = 0.

(2.50)
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Solving for the leading variables c1 and c2 in (2.50) then yields the solutions
c1 = t+ s
c2 = 2t− 3s
c3 = −t
c4 = s,

(2.51)

where t and s are arbitrary parameters.
Taking t = 1 and s = 0 in (2.51) yields the nontrivial linear relation

v1 + 2v2 − v3 = 0,

by virtue of the vector equation (2.48), which shows that v3 = v1 + 2v2 and
therefore

v3 ∈ span{v1, v2}. (2.52)

Similarly, taking t = 0 and s = 1 in (2.51) yields the nontrivial linear relation

v1 − 3v2 + v4 = 0,

from which we get that v4 = −v1 + 3v2, and therefore

v4 ∈ span{v1, v2}. (2.53)

It follows from (2.52) and (2.53) that

{v1, v2, v3, v4} ⊆ span{v1, v2}.

Consequently, since span{v1, v2, v3, v4} is the smallest subspace of R3 which
contains {v1, v2, v3, v4}, by Proposition 2.5.5,

span{v1, v2, v3, v4} ⊆ span{v1, v2}.

Combining this with

span{v1, v2} ⊆ span{v1, v2, v3, v4},

we obtain that
span{v1, v2} = span(S).

It remains to check that {v1, v2} is linearly independent. However, this follows
from the fact that v1 and v2 are not scalar multiples of each other. �

2.7.4 Nonhomogeneous Systems

Asking whether a vector v ∈ Rn is in the span of the set {v1, v2, . . . , vk} in Rn
leads to the system of n linear equations in k unknowns

a11c1 + a12c2 + · · ·+ a1kck = b1
a21c1 + a22c2 + · · ·+ a2kck = b2

...
...

...
an1c1 + an2c2 + · · ·+ ankck = bn,

(2.54)
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where

v1 =


a11
a21
a31
...
an1

 , v2 =


a12
a22
a32
...
an2

 , · · · , vk =


a1k
a2k
a3k
...
ank

 ,

and

v =


b1
b2
b3
...
bn

 .

If v is not the zero–vector in Rn, then the system in (2.54) is a nonhomoge-
neous. In general, nonhomogeneous system might or might not have solutions.
If they do have a solution, they either have exactly one solution or infinitely
many solutions.

We can analyze the system in (2.54) by considering the augmented matrix
a11 a12 · · · a1k | b1
a21 a22 · · · a2k | b2
...

...
...

... |
...

an1 an2 · · · ank | bn

 (2.55)

and performing elementary row operations on the rows of the matrix in (2.55).

Example 2.7.7. Determine whether or not the vector

 1
2
−3

 , is in the span

of the set

S =


 1

1
−1

 ,

 0
2
1

 ,

 1
5
1

 ,

−1
5
4

 .

Solution: Denote the elements of S by v1, v2, v3 and v4, respectively, and
consider the vector equation

c1v1 + c2v2 + c3v3 + c4v4 = v, (2.56)

where

v =

 1
2
−3

 .

Equation (2.56) leads to the system c1 + c3 − c4 = 1
c1 + 2c2 + 5c3 + 5c4 = 2
−c1 + c2 + c3 + 4c4 = −3,

(2.57)
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which has the augmented matrix

R1

R2

R3

 1 0 1 −1 | 1
1 2 5 5 | 2
−1 1 1 4 | −3

 .

Performing the elementary row operations −R1 +R2 → R2 and R1 +R3 → R3,
we obtain the augmented matrix: 1 0 1 −1 | 1

0 2 4 6 | 1
0 1 2 3 | −2

 .

Next, perform 1
2R2 → R2 and −R2 +R3 → R3 in succession to obtain 1 0 1 −1 | 1

0 1 2 3 | 1/2
0 0 0 0 | −5/2

 .

The third row in the previous matrix yields 0 = −5/2, which is impossible.

Therefore, the vector equation in (2.56) is not solvable. Hence,

 1
2
−3

 is not

in the span of the set S. �

2.8 Maximal Linearly Independent Subsets

The goal of this section is to prove that every subspace, W , of Rn is the span
of a linearly independent subset, S. In other words,

Theorem 2.8.1. Let W be a subspace of Rn. There exists a subset, S, of W
such that

(i) S is linearly independent, and

(ii) W = span(S).

In the proof of Theorem 2.8.1 we will use Proposition 2.7.5, which says that
any set of vectors {v1, v2, . . . , vk} in Rn with k > n must be linearly dependent,
and the following

Lemma 2.8.2. Let S = {v1, v2, . . . , vk} be a linearly independent subset of Rn.
If v 6∈ span(S), then the set

S ∪ {v} = {v1, v2, . . . , vk, v}

is linearly independent.

Remark 2.8.3. The set S ∪ {v} is called the union of the sets S and {v}.
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Proof of Lemma 2.8.2: Suppose that S is linearly independent and that v 6∈
span(S). Consider the vector equation

c1v1 + c2v2 + · · ·+ ckvk + cv = 0. (2.58)

We first show that c = 0. For, if c 6= 0, then we can solve for v in the vector
equation (2.58) to get

v =
(
−c1
c

)
v1 +

(
−c2
c

)
v2 + · · ·+

(
−ck
c

)
vk, (2.59)

where we have used the additive inverse, additive identity, associative and dis-
tributive properties of the vector space operations in Rn. Equation (2.59) dis-
plays v as a linear combination of the vectors in S; that is, v is an element of
the span of S. However, this contradicts the assumption that v 6∈ span(S). It
then follows that c = 0, and therefore, using (2.58),

c1v1 + c2v2 + · · ·+ ckvk = 0. (2.60)

It then follows from (2.60) and the linear independence of S that

c1 = c2 = · · · = ck = 0.

Hence, c1 = c2 = · · · = ck = c = 0 is the only solution of (2.58) and, therefore,
S ∪ {v} is linearly independent by Proposition 2.4.5.

We are now in a position to prove Theorem 2.8.1.

Proof of Theorem 2.8.1: Let W be a subspace of Rn. If W = {0}, then

W = span(∅);

therefore, S = ∅ in this case, and the proof is done.
On the other hand, if W 6= {0}, there exists v1 in W such that v1 6= 0.

Thus, {v1} is linearly independent. If W = span{v1}, set S = {v1} and the
proof is done. Otherwise, there exists v2 in W such that v2 6∈ span{v1}. Then,
by Lemma 2.8.2, the set {v1, v2} is linearly independent.

We may now proceed by induction to obtain a linearly independent sub-
set S = {v1, v2, . . . , vk} of W as follows: having found a linearly indepen-
dent subset {v1, v2, . . . , vk−1} of W such that span{v1, v2, . . . , vk−1} 6= W , pick
vk ∈ W such that vk 6∈ span{v1, v2, . . . , vk−1}. Then, by Lemma 2.8.2, the set
{v1, v2, . . . , vk−1, vk} is linearly independent.

We claim that this process has to stop for some value of k 6 n. The reason
for this is that, by Proposition 2.7.5, if k > n, then S is linearly dependent.
Furthermore, S = {v1, v2, . . . , vk} has the property that, every vector, v, in W ,
the set S ∪ {v} is linearly dependent. We therefore obtain a subset, S, of W
with the properties

(i) S is linearly independent, and
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(ii) for every v ∈W , the set S ∪ {v} is linearly dependent.

We claim that S must span W . To see why this is so, first observe that, since
S ⊆W , and W is a subspace of Rn, we get that

span(S) ⊆W, (2.61)

since span(S) is the smallest subspace of Rn which contains the set S. Thus, it
remains to show that

W ⊆ span(S). (2.62)

If (2.62) does not hold true, then there exists v ∈ W such that v 6∈ span(S). It
then follows by Lemma 2.8.2 that the set S ∪ {v} is linearly independent, but
this contradicts (ii) above. Consequently, every v in W must in span(S) and
(2.62) follows.

Combining (2.61) and (2.62) yields

span(S) = W,

which is (ii) in the statement of Theorem 2.8.1. Since S was constructed to be
linearly independent, we also get that (i) in Theorem 2.8.1 also holds and we
have therefore completed the proof of Theorem 2.8.1.

Remark 2.8.4. The subset S of W which we constructed in the proof of The-
orem 2.8.1 has the properties that: (i) S is linearly independent, and (ii) for
every vector v ∈ W , the set S ∪ {v} is linearly dependent. A set with these
two properties is called a maximal linearly independent subset subset of
W . Thus, we have proved that every subspace of Rn has a maximal linearly
independent subset.

2.9 Bases

A maximal linearly independent subset for a subspace, W , of Rn is also called
a basis for W .

Definition 2.9.1 (Basis of a Subspace). Let W be a subspace of Rn. A subset
B of W is said to be a basis for W if and only if

(i) B is linearly independent, and

(ii) W = span(B).

Example 2.9.2. Let W = Rn and B consist of the vectors e1, e2, . . . , en in Rn
given by

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .
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We show that B is a basis for Rn; in other words B is linearly independent and
it spans Rn.

We first show that B is linearly independent.
Consider the vector equation

c1e1 + c2e2 + · · ·+ cnen = 0, (2.63)

or

c1


1
0
...
0

+ c2


0
1
...
0

+ · · ·+ cn


0
0
...
1

 =


0
0
...
0

 ,

which leads to 
c1
c2
...
cn

 =


0
0
...
0

 ,

from which we get that
c1 = c2 = . . . = cn = 0

is the only solution of the vector equation in (2.63). Hence, B is linearly inde-
pendent.

Next, we show that Rn = span(B). To see why this is so, observe that for

any vector,


x1
x2
...
xn

 , in Rn,


x1
x2
...
xn

 =


x1
0
...
0

+


0
x2
...
0

+ · · ·+


0
0
...
xn



= x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1


= x1e1 + x2e2 + · · ·+ xnen,

which shows that


x1
x2
...
xn

 is in the span of {e1, e2, · · · , en}. Thus,

Rn ⊆ span(B).
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On the other hand, since B ⊆ Rn, we get that

span(B) ⊆ Rn.

Thus,

Rn = span(B).

Definition 2.9.3 (Standard Basis for Rn). The set {e1, e2, · · · , en}, denoted
by En, is called the standard basis for Rn.

Example 2.9.4. Let W =


xy
z

 ∈ R3
∣∣∣ x+ 2y − z = 0

 . We have seen that

W is a subspace of R3. Find a basis for W .

Solution: W is the solution space of the homogeneous linear equation

x+ 2y − z = 0.

Solving for x in tees of y and z, and setting these to be arbitrary parameters
−t and s, respectively, we get the solutions

x = 2t+ s
y = −t
z = s,

from which we get that

W =


xy
z

 ∈ R3
∣∣∣
xy
z

 = t

 2
−1

0

+ s

 1
0
1

 .

In other words,

W = span


 2
−1

0

 ,

 1
0
1

 .

Thus, the set

B =


 2
−1

0

 ,

 1
0
1


is a candidate for a basis for W . To show that B is a basis, it remains to show
that it is linearly independent. So, consider the vector equation

c1

 2
−1

0

+ c2

 1
0
1

 =

 0
0
0

 ,
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which is equivalent to the system 2c1 − c2 = 0
−c1 = 0

c2 = 0,

from which we read that c1 = c2 = 0 is the only solution. Consequently, B is
linearly independent.

We therefore conclude that B is a basis for W . �

2.10 Dimension

A remarkable fact about bases for a subspace, W , of Rn is that any two bases
of W must have the same number of vectors. For example, in Example 2.9.4 we
saw that

B =


 2
−1

0

 ,

 1
0
1


is a basis for the plane in R3 given by W =


xy
z

 ∈ R3
∣∣∣ x+ 2y − z = 0

 .

We did this by solving the equation

x+ 2y − z = 0

for x in terms of y and z and setting the last two variables to be arbitrary
parameters. However, we could have instead solved for z in terms of x and y.
This would have yielded the basis

B1 =


 1

0
1

 ,

 0
1
2

 .

Another basis for W is provided by the set

B2 =


 1
−1
−1

 ,

 1
1
3

 .

Notice that, in all three cases, the bases consist of two vectors; i.e., the three
bases for W displayed above have the same number of elements. The goal of
this section is to prove that this result holds true in general:

Theorem 2.10.1 (Invariance of number of elements in bases). Let W be a
subspace of Rn. If B1 and B2 are two bases of W , then B1 and B2 have the
same number of elements.

Theorem 2.10.1 is the basis for the following definition:



48 CHAPTER 2. EUCLIDEAN N–DIMENSIONAL SPACE

Definition 2.10.2 (Definition of Dimension). Let W be a subspace of Rn. The
dimension of W , denoted dim(W ), is the number of elements in a basis of W .

Example 2.10.3.

• If W = Rn, then dim(W ) = n since the standard basis, En, for Rn has n
vectors (see Example 2.9.2 on page 44 in these notes).

• If W = {0}, then dim(W ) = 0 since {0} = span(∅) and ∅ has no vectors.

• If W =


xy
z

 ∈ R3
∣∣∣ x+ 2y − z = 0

 , then dim(W ) = 2, since

B =


 2
−1

0

 ,

 1
0
1


is a basis for W .

Remark 2.10.4. Note that for any subspace W of Rn, dim(W ) 6 n. This last
statement follows from Theorem 2.8.1 and Proposition 2.7.5.

In order to prove the Invariance Theorem 2.10.1, we will need the following
lemma, which can be thought of as an extension of Proposition 2.7.5:

Lemma 2.10.5. Let W be a subspace of Rn with a basis B = {w1, w2, . . . , wk}.
Any set of vectors {v1, v2, . . . , vm} in W , with m > k, must be linearly depen-
dent.

Proof: Consider the vector equation

c1v1 + c2v2 + · · ·+ cmvm,= 0. (2.64)

Since the set B = {w1, w2, . . . , wk} is a basis for W , we can write each vj ,
j = 1, 2, . . . ,m, as liner combination of the vectors in B:

v1 = a11w1 + a21w2 + · · ·+ ak1wk,

v2 = a12w1 + a22w2 + · · ·+ ak2wk,

v3 = a13w1 + a23w2 + · · ·+ ak3wk,
...

vm = a1mw1 + a2mw2 + · · ·+ akmwk.

Substituting for vj , j = 1, . . . ,m, in the vector equation in (2.64) and applying
the distributive and associative properties yields the vector equation

(a11c1 + a12c2 + · · ·+ a1mcm)w1

+(a21c1 + a22c2 + · · ·+ a2mcm)w2

+ · · ·
+(ak1c1 + ak2c2 + · · ·+ akmcm)wk = 0.

(2.65)
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Next, since the set B = {w1, w2, . . . , wk} is linearly independent, it follows from
(2.65) that 

a11c1 + a12c2 + · · ·+ a1mcm = 0
a21c1 + a22c2 + · · ·+ a2mcm = 0

...
...

...
ak1c1 + ak2n2 + · · ·+ akmcm = 0,

(2.66)

which is a homogeneous system of of k linear equations in m unknowns. Since
m > k, the homogenous system in (2.66) has more unknowns than equations.
It then follows from the Fundamental Theorem 2.7.4 that system (2.66) has
infinitely many solutions. Consequently, the vector equation in (2.64) has a
nontrivial solution, and therefore, by Proposition 2.4.5, the set {v1, v2, . . . , vm}
is linearly dependent.

Proof of the Invariance Theorem 2.10.1. Let B1 and B2 be two bases for the
subspace, W , of Rn. Let k denote the number of vectors in B1 and m the
number of vectors in B2. We show that

k = m. (2.67)

If m > k, it follows from Lemma 2.10.5 the B2 is linearly dependent; but this
impossible since B2 is a basis for W and is, therefore, linearly independent.
Thus,

m 6 k. (2.68)

The same argument applied to B1 and B2 interchanged implies that

k 6 m. (2.69)

Equation (2.67) follows by combining (2.68) and (2.69), and the Theorem is
proved.

2.11 Coordinates

Another remarkable fact about bases for subspaces of Rn is the following

Theorem 2.11.1 (Coordinates Theorem). Let W be a subspace of Rn and

B = {w1, w2, . . . , wk}

be a basis for W . Given any vector, v, in W , there exists a unique set of scalars
c1, c2, . . . , ck such that

v = c1w1 + c2w2 + · · ·+ ckwk.

Proof: Since B spans W , there exist scalars c1, c2, . . . , ck such that

v = c1w1 + c2w2 + · · ·+ ckwk. (2.70)
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It remains to show that c1, c2, . . . , ck are the only scalars for which (2.70) works.
Suppose that there is another set of scalars d1, d2, . . . , dk such that

v = d1w1 + d2w2 + · · ·+ dkwk. (2.71)

Combining (2.70) and (2.71), we then obtain that

c1w1 + c2w2 + · · ·+ ckwk = d1w1 + d2w2 + · · ·+ dkwk. (2.72)

Adding (−d1)w1 + (−d2)w2 + · · · + (−dk)wk on both sides of equation (2.72)
and applying the associative and distributive properties we obtain that

(c1 − d1)w1 + (c2 − d2)w2 + · · ·+ (ck − dk)wk = 0. (2.73)

It then follows from (2.73) and the linear independence of the basis B =
{w1, w2, . . . , wk} that

c1 − d1 = c2 − d2 = · · · = ck − dk = 0,

from which we get

d1 = c1, d2 = c2, . . . , dk = ck.

This proves the uniqueness of the coefficients c1, c2, . . . , ck for the expansion of
v given in (2.70) in terms of the vectors in the basis B.

Definition 2.11.2 (Ordered Basis). Let W be a subspace of Rn of dimension
k and let B denote a basis for W . If the elements in B are listed in a specified
order: B = {w1, w2, . . . , wk}, then B is called an ordered basis. In this sense,
the basis B1 = {w2, w1, . . . , wk} is different from B even though, as sets, B and
B1 are the same; that is, the contain the same elements. However, as ordered
bases, B and B1 are not the same.

Definition 2.11.3 (Coordinates Relative to a Basis). Let W be a subspace of
Rn and

B = {w1, w2, . . . , wk}

be an ordered basis for W . Given any vector, v, in W , the coordinates of v
relative to the basis B, are the unique set of scalars c1, c2, . . . , ck such that

v = c1w1 + c2w2 + · · ·+ ckwk.

We denote the coordinates of v relative to the basis B by the symbol [v]B and

write [v]B =


c1
c2
...
ck

 . The vector [v]B in Rk is also called the coordinates

vector for v with respect to the basis B.
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Example 2.11.4. Let W =


xy
z

 ∈ R3
∣∣∣ x+ 2y − z = 0

 . We have seen

that the set

B =


 2
−1

0

 ,

 1
0
1


is a basis for W . Observe that the vector v =

 1
1
3

 is in W . To find the

coordinates of v relative to B, we need to solve the vector equation

c1

 2
−1

0

+ c2

 1
0
1

 =

 1
1
3


for c1 and c2. We see that c1 = −1 and c2 = 3, so that

[v]B =

(
−1

3

)
.

Observe that the coordinate vector [v]B is a vector in R2 since W is a two–
dimensional subspace of R3.

2.12 Euclidean Inner Product and Norm

The reason Rn is called Euclidean space is that, in addition to the vector space
structure that we have discussed so far, there is also defined on Rn a product
between vectors in Rn which produces a scalar. We shall denote the new prod-
uct by the symbol 〈v, w〉 for vectors v and w in Rn. We will call 〈v, w〉 the
Euclidean inner product of v and w, or simply, the inner product of v and
w.

2.12.1 Definition of Euclidean Inner Product

Before we give a formal definition of the inner product, let us show how we can
multiply a row–vector and a column–vector.

Definition 2.12.1 (Row–Column Product). Given a row–vector, R, of dimen-
sion n and a column–vector, C, also of the same dimension n, we define the
product RC as follows:
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Write R = [x1 x2 · · · xn] and C =


y1
y2
...
yn

 ; then,

RC = [x1 x2 · · · xn]


y1
y2
...
yn

 = x1y1 + x2y2 + · · ·+ xnyn.

Definition 2.12.2 (Transpose of a vector). Given a vector v =


x1
x2
...
xn

 in Rn,

the transpose of v, denoted by vT , is the row vector

vT =
(
x1 x2 · · · xn

)
.

Definition 2.12.3. Given vectors v =


x1
x2
...
xn

 and w =


y1
y2
...
yn

 , the inner

product of v and w is the real number (or scalar), denoted by 〈v, w〉, obtained
as follows

〈v, w〉 = vTw =
(
x1 x2 · · · xn

)

y1
y2
...
yn

 = x1y1 + x2y2 + · · ·+ xnyn.

The inner product defined above satisfies the following properties:

Given vectors v, w, v1, v2, w1 and w2 in Rn,

(i) Symmetry: 〈v, w〉 = 〈w, v〉;

(ii) Bi-Linearity: 〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉, for scalars c1 and c2,
and 〈v, d1w1 + d2w2〉 = d1〈v, w1〉+ d2〈v, w2〉, for scalars d1 and d2; and

(iii) Positive Definiteness: 〈v, v〉 > 0 for all v ∈ Rn and 〈v, v〉 = 0 if and only if
v is the zero vector.

These properties follow from the definition can be easily checked; for in-
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stance, to verify (i), write v =


x1
x2
...
xn

 and w =


y1
y2
...
yn

 . Then,

〈w, v〉 = [y1 y2 · · · yn]


x1
x2
...
xn

 = y1x1 + y2x2 + · · ·+ ynxn.

Thus, since multiplication of real numbers is commutative,

〈w, v〉 = x1y1 + x2y2 + · · ·+ xnyn = 〈v, w〉,

which shows the symmetry of the Euclidean inner product.
To verify the second part of the bi–linearity property, write

v =


x1
x2
...
xn

 , w1 =


y1
y2
...
yn

 , and w2 =


z1
z2
...
zn

 .

Then, for scalars d1 and d2,

〈v, d1w1 + d2w2〉 = [x1 x2 · · · xn]


d1y1 + d2z1
d1y2 + d2z2

...
d1yn + d2zn


= x1(d1y1 + d2z1) + x2(d1y2 + d2z2) + · · ·+ xn(d1yn + d2zn).

Next, use the distributive and associative properties to get

〈v, d1w1 + d2w2〉 = d1(x1y1x2y2 + · · ·+ xnyn) + d2(x1z1 + x2z2 + · · ·+ xnzn)

= d1〈v, w1〉+ d2〈v, w2〉.

Finally, the positive–definiteness property of the Euclidean inner product

follows from the observation that, if v =


x1
x2
...
xn

 , then

〈v, v〉 = x21 + x22 + · · ·+ x2n

is a sum of non–negative terms; and this sum is zero if and only if all the terms
are zero.

Given an inner product in a vector space, we can define a norm as follows.
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Definition 2.12.4 (Euclidean Norm in Rn). For any vector v ∈ Rn, its Eu-
clidean norm, denoted ‖v‖, is defined by

‖v‖ =
√
〈v, v〉.

Observe that, by the positive definiteness of the inner product, this definition
makes sense. Note also that we have defined the norm of a vector to be the
positive square root of the the inner product of the vector with itself. Thus, the
norm of any vector is always non–negative.

If P is a point in Rn with coordinates (x1, x2, . . . , xn), the norm of the vector
−−→
OP that goes from the origin to P is the distance from P to the origin; that is,

dist(O,P ) = ‖
−−→
OP‖ =

√
x21 + x22 + · · ·+ x2n.

If P1(x1, x2, . . . , xn) and P2(y1, y2, . . . , yn) are any two points in Rn, then the
distance from P1 to P2 is given by

dist(P1, P2) = ‖
−−→
OP2 −

−−→
OP2‖ =

√
(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yn − xn)2.

2.12.2 Euclidean Norm

As a consequence of the properties of the inner product, we obtain the following
properties of the norm:

Proposition 2.12.5 (Properties of the Norm). Let v denote a vector in Rn
and c a scalar. Then,

(i) ‖v‖ > 0 and ‖v‖ = 0 if and only if v is the zero vector.

(ii) ‖cv‖ = |c|‖v‖.

We also have the following very important inequality

Theorem 2.12.6 (The Cauchy–Schwarz Inequality). Let v and w denote vec-
tors in Rn; then,

|〈v, w〉| 6 ‖v‖‖w‖.

Proof. Consider the function f : R→ R given by

f(t) = ‖v + tw‖2 for all t ∈ R.

Using the definition of the norm, we can write

f(t) = 〈v + tw, v + tw〉.

We can now use the properties of the inner product to expand this expression
and get

f(t) = ‖v‖2 + 2t〈v, w〉+ t2‖w‖2.
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Thus, f(t) is a quadratic polynomial in t which is always non–negative. There-
fore, it can have at most one real root. It then follows that

(2〈v, w〉)2 − 4‖w‖2‖v‖2 6 0,

from which we get
(〈v, w〉)2 6 ‖w‖2‖v‖2.

Taking square roots on both sides yields the inequality.

The Cauchy–Schwarz inequality, together with the properties of the inner
product and the definition of the norm, yields the following inequality known
as the Triangle Inequality.

Proposition 2.12.7 (The Triangle Inequality). For any v and w in Rn,

‖w + w‖ 6 ‖v‖+ ‖w‖.

Proof. This is an Exercise.

Definition 2.12.8 (Unit vectors). A vector u ∈ Rn is said to be a unit vector
if ‖u‖ = 1.

Remark 2.12.9 (Normalization). Given a non–zero vector v in Rn, we can
define a unit vector in the direction of v as follows:

u =
1

‖v‖
v.

Then,

‖u‖ =

∥∥∥∥ 1

‖v‖
v

∥∥∥∥ =

∣∣∣∣ 1

‖v‖

∣∣∣∣ ‖v‖ =
1

‖v‖
‖v‖ = 1.

We call
1

‖v‖
v the normalization of v and usually denotes it by v̂.

2.12.3 Orthogonality

Definition 2.12.10 (Orthogonality). Two vectors v and w in Rn are said to
be orthogonal, or perpendicular, if

〈v, w〉 = 0.

Example 2.12.11. Let v ∈ Rn and define W = {w ∈ Rn | 〈w, v〉 = 0}; that is,
W is the set of all vectors in Rn which are orthogonal to v.

(a) Prove that W is a subspace of Rn.

Solution: First, observe that W 6= ∅ because 〈0, v〉 = 0 and therefore
0 ∈W and so W is nonempty.
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Next, we show that W is closed under addition and scalar multiplication.

To see that W is closed under scalar multiplication, observe that, by the
bi–linearity property of the inner product, if w ∈W , then

〈〈v, tw〉 = t〈v, w〉 = t · 0 = 0

for all t ∈ R.

To show that W is closed under vector addition, let w1 and w2 be two
vectors in W . Then, applying the bi–linearity property of the inner product
again,

〈w1 + w2, v〉 = 〈w1, v〉+ 〈w2, v〉 = 0 + 0 = 0;

hence, w1 + w2 ∈W . �

(b) Suppose that v 6= 0 and compute dim(W ).

Solution: Let B = {w1, w2, . . . wk} be a basis for W . Then, dim(W ) = k
and we would like to determine what k is.

First note that v 6∈ span(B). For, suppose that v ∈ span(B) = W , then

〈v, v〉 = 0.

Thus, by the positive definiteness of the Euclidean inner product, it follows
that v = 0, but we are assuming that v 6= 0. Consequently, the set

B ∪ {v} = {w1, w2, . . . wk, v}

is linearly independent. We claim that B ∪ {v} also spans Rn. To see why
this is so, let u ∈ Rn be any vector in Rn, and let

t =
〈u, v〉
‖v‖2

.

Write
u = tv + (u− tv),

and observe that u− tv ∈W . To see why this is so, compute

〈u− tv, v〉 = 〈u, v〉 − t〈v, v〉

= 〈u, v〉 − t‖v‖2

= 〈u, v〉 − 〈u, v〉
‖v‖2

‖v‖2

= 〈u, v〉 − 〈u, v〉

= 0.
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Thus, u− tv ∈W . It then follows that there exist scalars c1, c2, . . . , ck such
that

u− tv = c1w1 + c2w2 + · · ·+ ckwk.

Thus,
u = c1w1 + c2w2 + · · ·+ ckwk + tv,

which shows that u ∈ span(B ∪ {v}). Consequently, B ∪ {v} spans Rn.
Therefore, since B ∪ {v} is also linearly independent, it forms a basis for
Rn. We then have that B∪{v}must have n vectors in it, since dim(Rn) = n;
that is,

k + 1 = n,

from which we get that
dim(W ) = n− 1.

�
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Chapter 3

Spaces of Matrices

Matrices are rectangular arrays of numbers. More precisely, an m×n matrix is
an array of numbers made up of n columns, with each column consisting of m
scalar entries: 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 (3.1)

The columns of the matrix in (3.1) are the vectors

v1 =


a11
a21
a31
...
am1

 , v2 =


a12
a22
a32
...
am2

 , · · · , vn =


a1n
a2n
a3n
...
amn


in Rm.

We have already encountered matrices in this course, in connection with
systems of linear equations, when we discussed elementary row operations in the
augmented matrix corresponding to a system. We will see later in this course
that the connection between linear systems and matrices is a very important in
the theory of linear equations.

We will denote by M(m,n) the collection of all m × n matrices with real
entries. We will see that M(m,n) has the structure of a vector space with
addition and scalar multiplication defined in a manner analogous to those for
vectors in Euclidean space. In addition to the vector space structure, there is a
way to define a matrix product between a matrix in M(m,n) and a matrix in
M(n, k), in that order, to yield a matrix in M(m, k). This gives rise to a matrix
algebra in the space of square matrices (i.e., matrices in M(n, n)), which we
will also discuss in this chapter.

59
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3.1 Vector Space Structure in M(m,n)

Given matrices

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


and

B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bm1 bm2 · · · bmn


in M(m,n), we will use the shorthand notation

A = [aij ], 1 6 i 6 m, 1 6 j 6 n;

and
B = [bij ], 1 6 i 6 m, 1 6 j 6 n.

We define the vector sum of A and B, denoted by A+B, by

A+B = [aij + bij ], 1 6 i 6 m, 1 6 j 6 n;

that is, we add corresponding components to obtain the matrix sum of A and
B.

Example 3.1.1. Let A and B be the 2× 3 matrices given by

A =

(
4 0 7
−7 4 0

)
and B =

(
7 −4 0
4 −7 −4

)
.

Then,

A+B =

(
11 −4 7
−3 −3 −4

)
.

Note that if A,B ∈M(m,n), then A+B ∈M(m,n).
Similarly, we can define the scalar product of a scalar, c, with a matrix

A = [aij ] in M(m,n) by

cA = [caij ], 1 6 i 6 m, 1 6 j 6 n.

Example 3.1.2. Let A and B be as in Example 3.1.1. Then,

2A =

(
8 0 14
−14 8 0

)
and (−3)B =

(
−21 12 0
−12 21 12

)
.

We can therefore form the linear combination

2A+ (−3)B =

(
−13 12 14
−26 29 12

)
.
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Definition 3.1.3 (Equality of Matrices). We say that two matrices are equal iff
corresponding entries are the same. In symbols, write A = [aij ] and B = [bij ];
we say that A = B iff

aij = bij , for 1 6 i 6 m and 1 6 j 6 n.

The operations of matrix addition and scalar multiplication can be shown
to satisfy the following properties:

1. Properties of Matrix Addition

Let A, B and C denote matrices in M(m,n). Then,

(i) Commutativity of Matrix Addition

A+B = B +A

(ii) Associativity of Matrix Addition

(A+B) + C = A+ (B + C)

(iii) Existence of an Additive Identity

The matrix O = [oij ] ∈M(m,n) given by oi,j = 0, for all 1 6 i 6 m
and 1 6 j 6 n, has the property that

A+O = O +A = A for all A in M(m,n).

(iv) Existence of an Additive Inverse

Given A = [aij ] in M(m,n), the matrix W = [wij ] ∈M(m,n) defined
by wij = −aij for 1 6 i 6 m and 1 6 j 6 n has the property that

A+W = W +A = O.

The matrix W is called an additive inverse of A and is denoted by
−A.

2. Properties of Scalar Multiplication

(i) Associativity of Scalar Multiplication

Given scalars t and s and a matrix A in M(m,n),

t(sA) = (ts)A.

(ii) Identity in Scalar Multiplication

The scalar 1 has the property that

1 ·A = A for all A ∈M(m,n).
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3. Distributive Properties

Given matrices A and B in M(m,n), and scalars t and s,

(i) t(A+B) = tA+ tB

(ii) (t+ s)A = tA+ sA.

All these properties can be easily verified using the definitions. For instance,
to establish the distributive property (i) t(A + B) = tA + tA, write A = [aij ]
and B = [bij ], for 1 6 i 6 m and 1 6 j 6 n; then,

t(A+B) = [t(aij + bij)]
= [taij + tbij ]
= [taij ] + [tbij ]
= tA+ tB.

The properties of matrix addition and scalar multiplication are analogous to
those for vector addition and scalar multiplication in Euclidean space, and they
make M(m,n) into a vector space or linear space. Thus, we can talk about spans
of sets of matrices and whether a given set of matrices is linearly independent
or not.

Example 3.1.4. Consider the 2× 2 matrices(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
and

(
0 0
0 1

)
.

Denote them by A1, A2, A4 and A4, respectively.
We first show that the set {A1, A2, A3, A4} spans M(2, 2). To see why this

is the case, note that for any matrix 2× 2 matrix,

(
a b
c d

)
,

(
a b
c d

)
=

(
a 0
0 0

)
+

(
0 b
0 0

)
+

(
0 0
c 0

)
+

(
0 0
0 d

)

= a

(
1 0
0 0

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
+ d

(
0 0
0 1

)
,

so that (
a b
c d

)
∈ span{A1, A2, A3, A4}.

It then follows that

M(2, 2) = span{A1, A2, A3, A4}.

Next, we see that {A1, A2, A3, A4} is linearly independent.
Consider the matrix equation

c1

(
1 0
0 0

)
+ c2

(
0 1
0 0

)
+ c3

(
0 0
1 0

)
+ c4

(
0 0
0 1

)
=

(
0 0
0 0

)
, (3.2)
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or (
c1 c2
c3 c4

)
=

(
0 0
0 0

)
,

which implies that

c1 = c2 = c3 = c4 = 0.

Hence, the matrix equation in (3.2) has only the trivial solution. Consequently,
the set {A1, A2, A3, A4} is linearly independent.

We therefore have that {A1, A2, A3, A4} is a basis for M(2, 2). Consequently,

dim(M(2, 2)) = 4. Furthermore, the coordinate vector of the matrix

(
a b
c d

)
relative to the basis B = {A1, A2, A3, A4} is

[(
a b
c d

)]
B

=


a
b
c
d

 .

3.2 Matrix Algebra

There is a way to define the product of a matrix A ∈ M(m,n) and a matrix
B ∈ M(n, k) to obtain an m × k matrix AB. In this section we show how to
obtain that product and derive its properties.

3.2.1 The row–column product

We begin with the row–column product, which we have already defined in con-
nection with the Euclidean inner product in Section 2.12.1. Given R ∈M(1, n)
and C ∈M(n, 1), the product RC is the scalar obtained as follows:

Write R = [x1 x2 · · · xn] and C =


y1
y2
...
yn

 ; then,

RC = [x1 x2 · · · xn]


y1
y2
...
yn

 = x1y1 + x2y2 + · · ·+ xnyn,

or

RC =

n∑
j=1

xjyj .

We also saw in Section 2.12.1 that the row–column product satisfies the dis-
tributive properties:
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(i) (R1 +R2)C = R1C +R2C for R1, R1 ∈M(1, n) and C ∈M(n, 1);

(ii) R(C1 + C2) = RC1 +RC2 for R ∈M(1, n) and C1, C2 ∈M(n, 1).

3.2.2 The product of a matrix and a vector

We will now see how to use the row–column product to define the product of a

matrix A ∈M(m,n) and a (column) vector, x ∈ Rn, given by x =


x1
x2
...
xn

 :

Write

A =


R1

R2

...
Rm

 ,

where
R1 =

(
a11 a12 · · · a1n

)
,

R2 =
(
a21 a22 · · · a2n

)
,

...
Rm =

(
am1 am2 · · · amn

)
.

Then, the product Ax is given by

Ax =


R1x
R2x

...
Rmx

 ,

where, for each 1 6 i 6 m, Rix is the row–column product

Rix =

n∑
j=1

aijxj .

Thus, the product, Ax, of an m × n matrix, A, and a (column) vector, x, in
M(n, 1) = Rn is a (column) vector in M(m, 1) = Rm.

Example 3.2.1. Let A =

(
−1 0 1

2 −1 0

)
and x =

 1
−3

2

 . Then,

Ax =

(
−1 0 1

2 −1 0

) 1
−3

2

 =

(
1
5

)
.

Note that in this example A ∈ M(2, 3), x ∈ M(3, 1) = R3 and Ax ∈ M(2, 1) =
R2.
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3.2.3 Interpretations of the matrix product Ax

Observe that, using the definition of the matrix product Ax, the system of linear
equations 

a11x1 + a12x2 + · · ·+ a1kxn = b1
a21x1 + a22x2 + · · ·+ a2kxn = b2

...
...

...
am1x1 + am2x2 + · · ·+ amkxn = bm,

(3.3)

may be written in matrix form
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm

 ,

or
Ax = b, (3.4)

where A = [aij ] ∈ M(m,n), x =


x1
x2
...
xn

 ∈ Rn and b =


b1
b2
...
bm

 ∈ Rm. We

therefore see that there exists a very close connection between matrix algebra
and the theory of systems of linear equations. In particular, the system in (3.3)
is solvable if and only if the matrix equation in (3.4) has a solution x ∈ Rn for
the given vector b ∈ Rm.

Another interpretation of the matrix product Ax is provided by the following
observation: Note that the product

Ax =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 ,

may be re–written as

Ax =


a11x1
a21x1

...
am1x1

+


a12x2
a22x2

...
am2x2

+ · · ·+


a1nxn
a2nxn

...
amnxn



= x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n

...
amn


= x1v1 + x2v2 + · · ·+ xnvn,
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where we have set

v1 =


a11
a21
...

am1

 , v2 =


a12
a22
...

am2

 , · · · , vn =


a1n
a2n

...
amn

 ,

the columns of the matrix A. Hence, Ax is a linear combination of the columns,
v1, v2, . . . , vn, of the matrix A where the coefficients are the coordinates of x
relative to the standard basis E = {e1, e2, . . . , en} in Rn. We may therefore
write

Ax = [v1 v2 · · · vn]


x1
x2
...
xn


= x1v1 + x2v2 + · · ·+ xnvn.

These observations can be used to derive the following facts about the matrix
equation in (3.4).

Proposition 3.2.2 (Connections between matrix algebra and the theory of
linear equations). Write the m×n matrix A in terms of its columns v1, v2, . . . , vn
in Rm; that is,

A = [v1 v2 · · · vn].

1. Given b ∈ Rm, the matrix equation

Ax = b

has a solution if and only if b ∈ span{v1, v2, . . . , vn}; that is, the matrix
equation in (3.4) is solvable if and only if b is in the span of the columns
of A.

2. The homogenous equation

Ax = 0

has only the trivial solution if and only if the columns of A (namely,
v1, v2, . . . , vn) are linearly independent.

3. If the columns of A are linearly independent and span Rm, then n = m;
that is, A must be a square matrix.

3.2.4 The Matrix Product

Given matrices A ∈M(m,n) and B ∈M(n, k), write B it terms of its columns,

B = [v1 v2 · · · vk],
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where v1, v2, . . . , vk are (column) vectors in Rn. We define the product AB by

AB = A[v1 v2 · · · vk] = [Av1 Av2 · · · Avk],

where, for each j ∈ {1, 2, . . . , k},

Avj =


R1vj
R2vj

...
Rmvj

 ,

where R1, R2, . . . , Rm are the rows of the matrix A. We therefore have that

AB =


R1

R2

...
Rm

 [v1 v2 · · · vk]

=


R1v1 R1v2 · · · R1vk
R2v1 R2v2 · · · R2vk

...
... · · ·

...
Rmv1 Rmv2 · · · Rmvk

 .

Thus, if A ∈ M(m,n) and B ∈ M(n, k), the product AB is the m × k matrix
given by

AB = [Rivj ] 1 6 i 6 m, 1 6 j 6 k,

where R1, R2, . . . , Rm are the rows of A and v1, v2, . . . , vk are the columns of B.

Example 3.2.3. Let A =

(
−1 0 1

2 −1 0

)
and B =

 2 −1
−1 2

0 1

 . Then,

AB =

(
−1 0 1

2 −1 0

) 2 −1
−1 2

0 1

 =

(
−2 2

4 −4

)
.

Thus, A ∈M(2, 3), B ∈M(3, 2) and AB ∈M(2, 2).
Observe that we can also compute BA to obtain the 3× 3 matrix:

BA =

 2 −1
−1 2

0 1

(−1 0 1
2 −1 0

)
=

−4 1 2
5 −2 −1
2 −1 0

 .

Thus, in this example, AB 6= BA.

The previous example shows that matrix multiplication is not commutative.
Even when AB and BA have the same dimensions (e.g., when A and B are
square matrices of the same dimension), there is no guarantee that AB and BA
will be equal to each other.
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Example 3.2.4. Let A =

(
−1 1

2 3

)
and B =

(
0 −1
1 −2

)
. Then,

AB =

(
−1 1

2 3

)(
0 −1
1 −2

)
=

(
1 −1
3 −8

)
,

and

BA =

(
0 −1
1 −2

)(
−1 1

2 3

)
=

(
−2 −3
−5 −5

)
.

Hence, AB 6= BA.

3.2.5 Properties of Matrix Multiplication

We have already seen that matrix multiplication, when it is defined, is not
commutative. It is, however, associative and it distributes with respect to matrix
addition, as we will show in this section.

Proposition 3.2.5 (Distributive Properties).

(i) For A ∈M(m,n) and B,C ∈M(n, k),

A(B + C) = AB +AC.

(ii) For A,B ∈M(m,n) and C ∈M(n, k),

(A+B)C = AC +BC.

Proof of (i): Write

A =


R1

R2

...
Rm

 , B = [v1 v2 · · · vk], and C = [w1 w2 · · · wk],

where R1, R2, . . . , Rm ∈ M(1, n) are the rows of A, v1, v2, . . . , vk ∈ Rn are the
columns of B, and w1, w2, . . . , wk ∈ Rn are the columns of C. Then, using the
distributive property for the row–column product,

A(B + C) = [Ri(vj + wj)], 1 6 i 6 m, 1 6 j 6 k,

= [Rivj +Riwj ] 1 6 i 6 m, 1 6 j 6 k,

= [Rivj ] + [Riwj ] 1 6 i 6 m, 1 6 j 6 k,

= AB +AC,

which was to be shown.
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Given a matrix A = [aij ] ∈ M(m,n) and a matrix B = [bj`] ∈ M(n, k),
where 1 6 i 6 m, 1 6 j 6 n and 1 6 ` 6 k, we have seen that

AB = [Riv`] 1 6 i 6 m, 1 6 ` 6 k,

where R1, R2, . . . , Rm are the rows of A and v1, v2, . . . , vk are the columns of B.
Note that, for each i in {1, 2, . . . ,m} and each ` in {1, 2, . . . , k},

Ri =
(
ai1 ai2 · · · ain

)
,

and

v` =


b1`
b2`
...
an`

 ,

so that

Riv` =

n∑
j=1

aijbj`.

We can therefore write
AB = [di`],

where

di` =

n∑
j=1

aijbj`

for 1 6 i 6 m and 1 6 ` 6 k. We will use this short–hand notation for the
matrix product in the proof of the associative property below.

Proposition 3.2.6 (Associative Property). Let A ∈M(m,n), B ∈M(n, k) and
C ∈M(k, p). Then,

A(BC) = (AB)C.

Proof: Write A = [aij ], B = [bj`] and C = [c`r], where 1 6 i 6 m, 1 6 j 6 n,
1 6 ` 6 k and 1 6 r 6 p. Then,

AB = [di`], (3.5)

where

di` =

n∑
j=1

aijbj` (3.6)

for 1 6 i 6 m and 1 6 ` 6 k, and

BC = [ejr], (3.7)

where

ejr =

k∑
`=1

bj`c`r (3.8)
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for 1 6 j 6 n and 1 6 r 6 p. We then have that

A(BC) = [fir]

where

fir =

n∑
j=1

aijejr

for 1 6 1 6 m and 1 6 r 6 p, where we have used (3.7).
Thus, using (3.8) and the distributive property for real numbers,

fir =

n∑
j=1

aij

(
k∑
`=1

bj`c`r

)

=

n∑
j=1

k∑
`=1

aijbj`c`r,

where we have distributed aij in the the second sum. Thus, since interchanging
the order of summation does not alter the sum, we get that

fir =

k∑
`=1

n∑
j=1

aijbj`c`r

=

k∑
`=1

 n∑
j=1

aijbj`

 c`r,

where we have used the distributive property for real numbers to factor out c`r
from the second sum. Using (3.6), we then have that

fir =
k∑
`=1

di`c`r,

so

A(BC) = [fir] =

[
k∑
`=1

di`c`r

]
= (AB)C,

since

AB = [di`] 1 6 i 6 m, 1 6 ` 6 k,

by (3.5). This completes the proof of the associative property for matrix multi-
plication.

As a consequence of the associative property of matrix multiplication, we
can define the powers, An, for n = 1, 2, 3 . . ., of a square matrix A ∈ M(n, n),
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by computing
A2 = AA
A3 = AAA = A2A
A4 = AAAA = A3A

...
Am = Am−1A

...

We define the power A0 to be the n× n identity matrix I = [δij ] defined by

δij =

{
1 if i = j,

0 if i 6= j,

for 1 6 i, j 6 n.
We note that two powers, Am and Ak, of the matrix A commute with each

other; that is,
AmAk = AkAm.

To see why this is the case, use the associative property of matrix multiplication
to show that

AmAk = Am+k,

so that
AmAk = Ak+m = AkAm.

Example 3.2.7. A square matrix, A = [aij ] ∈M(n, n), is said to be a diagonal
matrix if aij = 0 for all i 6= j. Writing di = aii for i = 1, 2, . . . , n, we have that

A =


d1 0 · · · 0
0 d2 · · · 0
...

...
...

...
0 0 · · · dn

 .

Then,

A2 =


d1 0 · · · 0
0 d2 · · · 0
...

...
...

...
0 0 · · · dn




d1 0 · · · 0
0 d2 · · · 0
...

...
...

...
0 0 · · · dn

 =


d21 0 · · · 0
0 d22 · · · 0
...

...
...

...
0 0 · · · d2n

 .

By induction on m, we then see that

Am =


dm1 0 · · · 0
0 dm2 · · · 0
...

...
...

...
0 0 · · · dmn

 for m = 1, 2, 3, . . .
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3.3 Invertibility

In Section 3.2.3 on page 65 we saw how to use the matrix product to turn the
system 

a11x1 + a12x2 + · · ·+ a1kxn = b1
a21x1 + a22x2 + · · ·+ a2kxn = b2

...
...

...
am1x1 + am2x2 + · · ·+ amkxn = bm,

(3.9)

into the matrix equation
Ax = b, (3.10)

where A is the m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn


and x and b are the vectors

x =


x1
x2
...
xn

 and b =


b1
b2
...
bm


in Rn and Rm, respectively. We will see in this section how matrix algebra and
the vector space theory that we developed in the study of Euclidean spaces can
be used to answer questions regarding the solvability of the system in (3.9),
which is equivalent to the matrix equation in (3.10). For instance, suppose we
can find a matrix C ∈M(n,m) with the property that

AC = I, (3.11)

where I denotes the identity matrix in M(m,m). Then, using the associativity
of the matrix product, which we proved in Proposition 3.2.6, we see that

A(Cb) = (AC)b = Ib = b,

so that x = Cb is a solution to the matrix equation in (3.10). A matrix C ∈
M(n,m) with the property that AC = I is called a right–inverse for A.

3.3.1 Right and Left Inverses

Definition 3.3.1 (Right–Inverse). A matrix A ∈ M(m,n) is said to have a
right–inverse if there exists a matrix C ∈M(n,m) with the property that

AC = I,

where I denotes the identity matrix in M(m,m).
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We have just proved the following

Proposition 3.3.2. Suppose that A ∈ M(m,n) has a right–inverse. Then, for
any vector b ∈ Rm, the matrix equation

Ax = b

has at least one solution.

Example 3.3.3. Let A =

 2 −1 −3
1 1 1
1 2 3

 . Then, the matrix

C =

 1 −3 2
−2 9 −5

1 −5 3


is a right–inverse for A since AC = I, where I is the 3 × 3 identity matrix.

Then, for any b =

b1b2
b3

 ∈ R3,

x = Cb =

 1 −3 2
−2 9 −5

1 −5 3

b1b2
b3

 =

 b1 − 3b2 + 2b3
−2b1 + 9b2 − 5b3
b1 − 5b2 + 3b3


is a solution to the equation

Ax = b

and, therefore, it is a solution to the system 2x1 − x2 − 3x3 = b1
x1 + x2 + x3 = b2
x1 + 2x2 + 3x3 = b3,

for any scalars b1, b2 and b3.

We now turn to the question: When does the equation Ax = b have only
one solution?

Definition 3.3.4 (Left–Inverse). A matrix A ∈M(m,n) is said to have a left–
inverse if there exists a matrix B ∈M(n,m) with the property that

BA = I,

where I denotes the identity matrix in M(n, n).

Proposition 3.3.5. Suppose that A ∈ M(m,n) has a left–inverse. Then, for
any vector b ∈ Rm, the matrix equation

Ax = b

can have at most one solution
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Proof: Assume that A has a left–inverse, B, then BA = I.

Suppose that v, w ∈ Rn are two solutions to the equation Ax = b. It then
follows that

Av = b and Aw = b.

Consequently,

Av = Aw.

Thus,

Av −Aw = 0.

Using the distributive property for matrix multiplication proved in Proposition
3.2.5 we then obtain that

A(v − w) = 0.

Multiply on both sides by B we obtain that

B[A(v − w)] = B0,

so that, by the associative property of the matrix product,

(BA)(v − w) = 0,

or

I(v − w) = 0.

We therefore get that v − w = 0, or v = w. Hence, Ax = b can have at most
one solution.

Corollary 3.3.6. Suppose that A ∈ M(m,n) has a left–inverse. Then, the
columns of A are linearly independent.

Proof: Assume that A has a left–inverse and write A = [
(
v1 v2 · · · vn

)
],

where v1, v2, . . . , vn ∈ Rm are the columns of A, and suppose that


c1
c2
...
cn

 is a

solution to the vector equation

c1v1 + c2v2 + · · ·+ cnvn = 0,

which can be written in matrix form as

A


c1
c2
...
cn

 = 0.
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Thus,


c1
c2
...
cn

 is a solution to

Ax = 0. (3.12)

Since, A has a left–inverse, it follows from Proposition 3.3.5 that the equation
in (3.12) has at most one solution. Observe that the x = 0 is already a solution
of (3.12). Consequently,

c1 = c2 = · · · = cn = 0,

and therefore the set {v1, v2, . . . , vn} is linearly independent.

Theorem 3.3.7. Let A ∈M(m,n) have a left–inverse, B, and a right–inverse,
C. Then, m = n and B = C.

Proof: Assume that A ∈ M(m,n) has a left–inverse, B, and a right–inverse,
C. By Corollary 3.3.6, the columns of A are linearly independent. Denote the
columns of A by v1, v2, . . . , vn. We show that {v1, v2, . . . , vn} spans Rm. To see
why this is so, let b ∈ Rm and consider the equation

Ax = b. (3.13)

Since A has a right inverse, it follows from Proposition 3.3.2 that equation (3.13)
has a solution. Thus, there exist scalars x1, x2, . . . , xn such that

x1v1 + x2v2 + · · ·+ xnvn = b,

so that b ∈ span{v1, v2, . . . , vn}.
We have shown that {v1, v2, . . . , vn} is linearly independent and spans Rm.

Hence, it is a basis for Rm and therefore n = m, since dim(Rm) = m.
Next, multiply BA = I by C on the left to get

(BA)C = IC

or, by the associative property,

B(AC) = C,

which implies that BI = C or B = C.

3.3.2 Definition of Inverse

Theorem 3.3.7 is the basis for the following definition of invertibility for a square
matrix.

Definition 3.3.8. A square matrix, A ∈ M(n, n), is said to be invertible is
there exists a matrix B ∈M(n, n) such that

BA = AB = I,

where I denotes the n× n identity matrix.
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As a consequence of Theorem 3.3.7 we get the following

Proposition 3.3.9. Let A ∈ M(n, n) and suppose that there exists a matrix
B ∈M(n, n) such that

BA = AB = I,

where I denotes the n× n identity matrix. Then, if C ∈M(n, n) is such that

CA = AC = I,

then C = B.

Hence, if A ∈ M(n, n) is invertible, then there exists a unique matrix B ∈
M(n, n) such that

BA = AB = I.

Definition 3.3.10. If A ∈ M(n, n) is invertible, then the unique matrix B ∈
M(n, n) such that

BA = AB = I

is called the inverse of A and is denoted by A−1.

Example 3.3.11. Suppose that A ∈ M(n, n) is invertible. Then, A−1 is also
invertible and (

A−1
)−1

= A.

To see why this is so, simply observe that, from

A−1A = AA−1 = I,

A is both a right–inverse and a left–inverse of A−1.

3.3.3 Constructing Inverses

In Example 3.3.3 we saw that C =

 1 −3 2
−2 9 −5

1 −5 3

 is a right–inverse of the

matrix A =

 2 −1 −3
1 1 1
1 2 3

 . We can also compute CA = I, so that C is also

a left–inverse of A and therefore A is invertible with inverse A−1 = C. In this
section we present an algorithm based on elementary row operations which can
be used to determine whether a given square matrix is invertible or not and to
compute its inverse, if it is invertible.

Before we proceed any further, let’s establish the following lemma which is
very useful when looking for inverses.

Lemma 3.3.12. If A ∈ M(n, n) has a left inverse B, then A is invertible and
A−1 = B.
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Proof: Assume that A ∈ M(n, n) has a left inverse B. By Corollary 3.3.6,
the columns of A form a linearly independent subset, {v1, v2, . . . , vn}, of Rn.
Hence, since dim(Rn) = n, it follows that {v1, v2, . . . , vn} is a basis for Rn and,
therefore, {v1, v2, . . . , vn} spans Rn. Consequently, any vector in Rn is a linear
combination of the vectors in {v1, v2, . . . , vn}. In particular, there exist cij , for
1 6 i, j 6 n, such that

c11v1 + c21v2 + · · ·+ cn1vn = e1
c12v1 + c22v2 + · · ·+ cn2vn = e2

...
...

...
c1nv1 + c2nv2 + · · ·+ cnnvn = e1,

where {e1, e2, · · · , en} is the standard basis is Rn. We then get that

A


c1,j
c2j
...
cnj

 = ej

for j = 1, 2, . . . , n. Consequently, if we set C = [cij ] for 1 6 i, j 6 n, we see that

ACj = ej ,

where Cj is the jth column of C; in other words

AC = [AC1 AC2 · · · ACn] = [e1 e2 · · · en] = I.

We have therefore shown that A has right–inverse, C. Thus, A has both a right
and a left inverse, which shows that A is invertible and therefore A−1 = B.

It is also possible to prove that, if A has a right–inverse, then A is invertible.

Proposition 3.3.13. If A ∈M(n, n) has a right–inverse, C, then A is invertible
and A−1 = C.

Proof: Assume A ∈M(n, n) has a right–inverse, C ∈M(n, n); then

AC = I. (3.14)

Taking transpose on both sides of (3.14) yields

CTAT = I, (3.15)

where we have used the result of Problem 3 in Assignment #15. It follows
from (3.15) that AT has a left–inverse. Thus, applying Lemma 3.3.12, AT is
invertible with inverse (AT )−1 = CT . Finally, applying the result of Problem 5
in Assignment #16, we obtain that A = (AT )T is invertible with

A−1 = [(AT )−1]T = (CT )T = C,

which was to be shown.
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Corollary 3.3.14. Let A ∈M(n, n). If the columns of A are linearly indepen-
dent, then A is invertible.

Proof: Write A = [v1 v2 · · · vn], where v1, v2, . . . , vn ∈ Rn are the columns
of A. Assume that the set {v1, v2, . . . , vn} is linearly independent; then, since
dim(Rn) = n, {v1, v2, . . . , vn} forms a basis for Rn. In particular, {v1, v2, . . . , vn}
spans Rn so that, for any b ∈ Rn, the equation

Ax = b

has a solution in Rn. Applying this result to the equations

Ax = ej , for j = 1, 2, . . . , n,

where {e1, e2, . . . , en} is the standard basis in Rn, we obtain vectors w1, w2, . . . , wn ∈
Rn such that

Awj = ej , for j = 1, 2, . . . , n. (3.16)

Set C = [w1 w2 · · · wn]; then

AC = [Aw1 Aw2 · · · Awn]

= [e1 e2 · · · en]

= I,

where we have used (3.16). It follows that A has a right–inverse. Consequently,
by Proposition 3.3.13, A is invertible.

Next, we introducing the concept of an elementary matrix.

Definition 3.3.15 (Elementary Matrix). A matrix, E ∈ M(n, n), which is
obtained from the n × n identity matrix, I, by performing a single elementary
row operation on I is called an elementary matrix.

Example 3.3.16. Start with the 3 × 3 identity matrix I =

1 0 0
0 1 0
0 0 1

 and

perform the elementary row operation cR1 +R3 → R3 to obtain

E =

1 0 0
0 1 0
c 0 1

 .

Observe that if we multiply any 3× 3 matrix A on the left by the matrix E
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in Example 3.3.16 we obtain

EA =

1 0 0
0 1 0
c 0 1

a11 a12 a13
a21 a22 a23
a31 a32 a33



=

 a11 a12 a13
a21 a22 a23

ca11 + a31 ca12 + a32 ca13 + a33



=

 R1

R2

cR1 +R3

 ,

where R1, R2 and R3 denote the rows of A. Hence, the effect of multiplying
A by E on the left it to perform the same elementary row operation on A that
was used on I to obtain E. This is true of all elementary matrices.

Note that we can revert from E to the identity by performing the elementary
row operation −cR1+R3. This is equivalent to multiplying E by the elementary
matrix

F =

 1 0 0
0 1 0
−c 0 1

 .

We then get that
FE = I,

and therefore, by Lemma 3.3.12, E is invertible with E−1 = F . This is also true
for all elementary matrices; that is, any elementary matrix is invertible and its
inverse is an elementary matrix.

We summarize the previous two observations about elementary matrices in
the following

Proposition 3.3.17. Let E ∈M(m,m) denote an elementary matrix.

(i) For any matrix A ∈ M(m,n), EA yields a matrix resulting from A by
performing on A the same elementary row operation which led from I ∈
M(m,m) to E.

(ii) E is invertible and its inverse is also an elementary matrix.

Definition 3.3.18 (Row Equivalence). A matrix A ∈ M(m,n) is said to be
row equivalent to a matrix B ∈ M(m,n) if there exist elementary matrices,
E1, E2, . . . , Ek ∈M(m,m) such that

EkEk−1 · · ·E2E1A = B.

The most important example of row equivalence for this section is the case
in which and n× n matrix, A, is row equivalent to the identity I ∈M(n, n).
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Proposition 3.3.19. If A ∈ M(n, n) is row equivalent to the identity, then A
is invertible and

A−1 = EkEk−1 · · ·E2E1,

where E1, E2, . . . , Ek are n× n elementary matrices.

Proof: Assume that A ∈ M(n, n) is row equivalent to the identity I ∈ M(n, n).
Then, there exist elementary matrices, E1, E2, . . . , Ek ∈M(n, n) such that

EkEk−1 · · ·E2E1A = I,

or
(EkEk−1 · · ·E2E1)A = I.

It then follows from Lemma 3.3.12 that A is invertible and

A−1 = EkEk−1 · · ·E2E1.

Thus, if A is invertible, to find its inverse, all we need to do is find a sequence
of elementary matrices E1, E2, . . . , Ek ∈M(n, n) such that

EkEk−1 · · ·E2E1A = I.

Since multiplying by an elementary matrix on the left is equivalent to performing
an elementary row operation on the matrix, EkEk−1 · · ·E2E1A is the result
of performing k successive elementary row operations on the matrix A. The
product EkEk−1 · · ·E2E1 keeps track of those operations. This can also be
done by performing elementary row operations on the augmented matrix

[ A | I ]. (3.17)

Performing the first elementary row operation on the matrix in (3.17) yields

[ E1A | E1I ],

or
[ E1A | E1 ].

Performing the second elementary row operation on the augmented matrix in
(3.17) then yields

[ E1E1A | E2E1 ].

Continuing in this fashion we obtain

[ EkEk−1 · · ·E1E1A | EkEk−1 · · ·E2E1 ],

or
[ I | A−1 ]. (3.18)

Hence, if after performing elementary row operations on the augmented matrix
in (3.17) we obtain the augmented matrix in (3.18), we can conclude that A is
invertible and and its inverse is the matrix obtained in the right–hand side of
the augmented matrix in (3.18).
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Example 3.3.20. Use Gaussian elimination to compute the inverse of the ma-
trix

A =

 2 −1 −3
1 1 1
1 2 3

 .

Solution: Begin with the augmented matrix 2 −1 −3 | 1 0 0
1 1 1 | 0 1 0
1 2 3 | 0 0 1

 . (3.19)

Then, perform the elementary row operations R1 ↔ R2, −2R1 +R2 → R2 and
−R1 +R3 → R3 in succession to turn the matrix in (3.19) into 1 1 1 | 0 1 0

0 −3 −5 | 1 −2 0
0 1 2 | 0 −1 1

 . (3.20)

Next, perform on the augmented matrix in (3.20) the elementary row operations
R2 ↔ R3 and 3R2 +R3 → R3 in succession to get 1 1 1 | 0 1 0

0 1 2 | 0 −1 1
0 0 1 | 1 −5 3

 . (3.21)

Finally, perform the elementary row operations −2R3 +R2 → R2, −R3 +R1 →
R1 and −R2 + R1 → R1 in succession to obtain from (3.21) the augmented
matrix  1 0 0 | 1 −3 2

0 1 0 | −2 9 −5
0 0 1 | 1 −5 3

 . (3.22)

We then read from (3.22) that

A−1 =

 1 −3 2
−2 9 −5

1 −5 3


�

It follows from Proposition 3.3.19 and the fact that the inverse of an ele-
mentary matrix is also an elementary matrix that every invertible matrix is the
product of elementary matrices. Indeed, if A is an invertible n×n matrix, then,
by virtue of Proposition 3.3.19,

A−1 = EkEk−1 · · ·E2E1, (3.23)

where E1, E2, . . . , Ek are n × n elementary matrices. Thus, taking inverses on
both sides of (3.23),

A = E−11 E−12 · · ·E
−1
k .

We have therefore proved the following proposition.
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Proposition 3.3.21. Every invertible n× n matrix is a product of elementary
matrices.

3.4 Nullity and Rank

Given an m × n matrix, A, we can define the following subspaces associated
with A:

1. The column cpace of A, denoted by CA is the subspace of Rm defined
as the span of the columns of A; that is, if A = [v1 v2 · · · vn], then

CA = span{v1, v2, . . . , vn}.

Example 3.4.1. Let A denote the matrix 1 3 −1 0
2 2 2 4
1 0 2 3

 . (3.24)

Then, CA is the subspace of R3 given by

CA = span


 1

2
1

 ,

 3
2
0

 ,

−1
2
2

 ,

 0
4
3

 .

We saw in Problem 2 of Assignment #9 that the set
 1

2
1

 ,

 3
2
0


is a basis for CA. Hence, dim(CA) = 2.

Definition 3.4.2 (Column Rank). Given an m×n matrix, A, the dimen-
sion of C is called the column rank of the matrix A. In these notes, we
will denote the row rank of A by c(A); thus,

c(A) = dim(CA).

Observe that, since CA is a subspace of Rm,

c(A) 6 m.

2. The row space of A, denoted by RA, is the subspace of M(1, n) spanned
by the rows of A. If we let R1, R2, . . . , Rm denote the rows of A, then

RA = span{R1, R2, . . . , Rm}.
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The dimension of the row space of A is called the row rank of A and we
will denote it by r(A). We then have that

r(A) 6 n,

since RA is a subspace of M(1, n) and dim(M(1, n)) = n.

Example 3.4.3. LetA denote the matrix in Example 3.4.1 given in (3.24).
We would like to compute the row rank of A. In order to do this we need to
find a basis for the span of the rows of A. Denote the rows of A by R1, R2

and R3. We can find a linearly independent subset of {R1, R2, R3} which
also spans RA by performing elementary row operations on the matrix A
and keeping track of them as follows: Start with the matrix R1

R2

R3

  1 3 −1 0
2 2 2 4
1 0 2 3

 , (3.25)

where we are keeping track of the operations on the left–hand side of
(3.25). Performing −2R1 + R2 → R2 and −R1 + R3 → R3 in succession
on the matrix in (3.25) and keeping track of the results of the operations
on the left of the matrix in (3.25) yields R1

−2R1 +R2

−R1 +R3

  1 3 −1 0
0 −4 4 4
0 −3 3 3

 . (3.26)

Next, perform the operations − 1
4R2 → R2 and 3R2 +R3 → R3 in succes-

sion to the matrices in (3.26) to get R1
1
2R1 − 1

4R2

− 1
2R1 − 3

4R2 +R3

  1 3 −1 0
0 1 −1 −1
0 0 0 0

 . (3.27)

We then get from the matrices in (3.27) that

−1

2
R1 −

3

4
R2 +R3 = O,

where O denotes the zero matrix in M(1, 4). Hence,

R3 =
1

2
R1 +

3

4
R2,

which shows that R3 ∈ span{R1, R2} and therefore

span{R1, R2, R3} = span{R1, R2}.

Since R1 and R2 are clearly not multiple of each other, it follows that
{R1, R2} is linearly independent and therefore it is a basis for RA. It then
follows that r(A) = dim(RA) = 2.
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3. The null space of A, denoted by NA is the subset of Rn defined by

NA = {v ∈ Rn | Av = 0}.

NA is a subspace of Rn. In order to see why this is so, first observe that
NA 6= ∅ since 0 ∈ NA because A0 = 0. Next, suppose that v, w ∈ NA;
then

Av = 0 and Aw = 0.

It then follows from the distributive property for matrix multiplication
that

A(v + w) = Av +Aw = 0 + 0 = 0,

and so v + w ∈ NA; thus, NA is closed under vector addition. Finally,
note that for any v ∈ Rn and c ∈ R,

A(cv) =


R1

R2

...
Rm

 (cv)

=


R1(cv)
R2(cv)

...
Rm(cv)



=


〈RT1 , cv〉
〈RT2 , cv〉

...
〈RTm, cv〉

 ,

Where 〈·, ·〉 denotes the Euclidean inner product in Rn. It then follows
from the bilinearity of the inner product that

A(cv) =


c〈RT1 , v〉
c〈RT2 , v〉

...
c〈RTm, v〉



= c


〈RT1 , v〉
〈RT2 , v〉

...
〈RTm, v〉


= cAv.
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Thus, if v ∈ NA, then

A(cv) = cA(v) = c0 = 0,

which shows that cv ∈ NA and therefore NA is closed under scalar multi-
plication.

Example 3.4.4. LetA denote the matrix in Example 3.4.1 given in (3.24).
To compute the null space of A, we find the solution space of the system

Ax = 0,

or  x1 + 3x2 − x3 = 0
2x1 + 2x2 + 2x3 + 4x4 = 0
x1 + 2x3 + 3x4 = 0.

(3.28)

We can use Gauss–Jordan reduction to turn the system in (3.28) into the
equivalent system {

x1 + 2x3 + 3x4 = 0
x2 − x3 − x4 = 0,

(3.29)

which can be solved to yield

NA = span




2
−1
−1

0

 ,


3
−1

0
−1


 .

Thus, the set 


2
−1
−1

0

 ,


3
−1

0
−1


 .

is a basis for NA, and therefore dim(NA) = 2.

Given A ∈ M(m,n), the dimension of the null space, NA, of A is called
the nullity of A and we will denote it by n(A). We then have that

n(A) = dim(NA).

Observe that, an m×n matrix A, since NA is a subspace of Rn, it follows
that

n(A) 6 n.

In the previous example we showed that for the 3 × 4 matrix A given in
(3.24), the nullity of A is n(A) = 2.
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The main goal of this section is to prove the following facts about the row
rank, the column rank and the nullity of an m× n matrix A:

Theorem 3.4.5. Let A ∈M(m,n). Then,

(i) (Equality of row rank and column rank)

r(A) = c(A);

and

(ii) (Dimension Theorem for Matrices)

n(A) + r(A) = n.

We will therefore call the dimension of the column space of A simply the
rank of A and denote it by r(A).

We will present here a proof of the equality of the row rank and the column
rank based on an argument given by Mackiw in [Mac95, pp. 285–286]). We first
prove the following

Lemma 3.4.6. Let A ∈M(m,n) and denote the row space of A by RA. Define

R⊥A = {w ∈ Rn | Riw = 0 for i = 1, 2, . . . ,m},

where R1, R2, . . . , Rm denote the rows of the matrix A; i.e., R⊥A is the set of
vectors in Rn which are orthogonal to the vectors RT1 , R

T
2 , . . . , R

T
m in Rn. Then,

(i) R⊥A = NA, and

(ii) if w ∈ NA and wT ∈ RA, then w = 0.

Proof of (i): Observe that w ∈ NA if and only if Aw = 0, or
R1w
R2w

...
Rmw

 =


0
0
...
0

 .

Hence, w ∈ NA if and only if Riw = 0 for i = 1, 2, . . . ,m. This is equivalent to
NA = R⊥A.

Proof of (ii): Assume that w ∈ NA and wT ∈ R⊥A. Then, by the result of part
(1), w ∈ R⊥A, which implies that vTw = 0 for all vT ∈ RA. Thus, in particular,
wTw = 0, or 〈w,w〉 = 0, which implies that w = 0, by the positive definiteness
of the Euclidean inner product.
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Proof of the equality of the row and columns ranks: Let r(A) = k. Then, there
exist w1, w2, . . . , wk in Rn such that {wT1 , wT2 , . . . , wTk } is a basis for RA.

Consider the set {Aw1, Aw2, . . . , Awk}, which is a subset of Rm. We first
observe that

{Aw1, Aw2, . . . , Awk} ⊆ CA. (3.30)

To see why this is the case, write wj , for j = 1, 2, . . . , k, in terms of the standard
basis {e1, e2, . . . , en} for Rn:

wj = c1je1 + c2je2 + · · ·+ cnjen,

and apply A to get

Awj = c1je1 + c2je2 + · · ·+ cnjen
= A(c1je1 + c2je2 + · · ·+ cnjen)
= A(c1je1) +A(c2je2) + · · ·+A(cnjen)
= c1jAe1 + c2jAe2 + · · ·+ cnjAen,

where we have used the distributive property of matrix multiplication and the
fact that A(cv) = cAv for all scalars c and all vectors v ∈ Rn. Noting that
Ae1, Ae2, . . . , Aen are the columns of A, we see that (3.30) follows.

Next, we show that {Aw1, Aw2, . . . , Awk} is linearly independent. To prove
this, suppose that c1, c2, . . . , ck is a solution of the vector equation

c1Aw1 + c1Aw2 + · · ·+Awk = 0. (3.31)

Then, using the distributive property of the matrix product and the fact that
A(cv) = cAv for all scalars c and all vectors v ∈ Rn, we get from (3.31) that

A(c1w1 + c1w2 + · · ·+ wk) = 0,

which shows that the vector w = c1w1 + c1w2 + · · · + wk is in the null space,
NA, of the matrix A. On the other hand,

wT = c1w
T
1 + c1w

T
2 + · · ·+ wTk , (3.32)

is in RA, since {wT1 , wT2 , . . . , wTk } is a basis for RA. It then follows from part
(ii) in Lemma 3.4.6 that w = 0. We then get from (3.32) that

c1w
T
1 + c1w

T
2 + · · ·+ wTk = 0,

which implies that
c1 = c2 = · · · = ck = 0,

since the set {wT1 , wT2 , . . . , wTk } is linearly independent. We have therefore shown
that the only solution to the vector equation in (3.31) is the trivial solution, and
hence the set {Aw1, Aw2, . . . , Awk} is linearly independent. It then follows from
Lemma 2.10.5 that

k 6 c(A),
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or
r(A) 6 c(A). (3.33)

Applying the previous argument to AT we see that

r(AT ) 6 c(AT ),

which is equivalent to
c(A) 6 r(A). (3.34)

Combining (3.33) and (3.34) proves the equality of the row and column ranks.

Next, we preset a proof of part (ii) of Theorem 3.4.5, the Dimension Theorem
for Matrices. In the proof we will use the following Lemma, which is Theorem
3.13 (the Expansion Theorem) in Messer, [Mes94, pg. 119].

Lemma 3.4.7. Let {w1, w2, . . . , wk} denote a linearly independent subset of
Rn. If k < n, there exist vectors v1, v2, . . . , v` in Rn such that

{w1, w2, . . . , wk, v1, v2, . . . , v`}

is a basis for Rn, where k + ` = n.

Proof: Since k < n, span{w1, w2, . . . , wk} 6= Rn because dim(Rn) = n. Hence,
there exists v1 ∈ Rn such that v1 6∈ span{w1, w2, . . . , wk}. Consequently, by
Lemma 2.8.2 on page 42 in these notes, {w1, w2, . . . , wk, v1} is linearly indepen-
dent. If

{w1, w2, . . . , wk, v1}

spans Rn, it is a basis for Rn and the Lemma is proved in this case. If not,
there exists v2 ∈ Rn such that v2 6∈ span{w1, w2, . . . , wk, v1}. Thus, invoking
Lemma 2.8.2 again, the set {w1, w2, . . . , wk, v1, v2} is linearly independent. If
{w1, w2, . . . , wk, v1, v2} also spans Rn, the Lemma is proved. If not, we continue
as before. We therefore conclude that there exist v1, v2, . . . , v` in Rn such that

{w1, w2, . . . , wk, v1, v2, . . . , v`}

is a linearly independent subset such that

span{w1, w2, . . . , wk, v1, v2, . . . , v`} = Rn.

This proves the Lemma.

Proof of the Dimension Theorem for Matrices: We show that for any m×n ma-
trix, A,

n(A) + r(A) = n, (3.35)

where n(A) is the nullity of A and r(A) is the rank of A, which we know to be
the same as the dimension of the columns space of A, CA.
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If n(A) = 0, then NA = {0} and therefore the equation

Ax = 0

has only the trivial solution and, therefore, the columns of A are linearly in-
dependent. Thus, they form a basis for the column space of A and therefore
dim(CA) = n; that is, r(A) = n which implies (3.35) for the case n(A) = 0.

Thus, assume that n(A) = k > 0. Then, since NA is a subspace of Rn,
1 6 k 6 n. Let {w1, w2, . . . , wk} denote a basis for NA. If k = n, then
NA = Rn, since dim(Rn) = n and therefore Ax = 0 for all x ∈ Rn and therefore
all the columns of A are the zero vector in Rn, which implies that CA = {0};
therefore, dim(CA) = 0, which shows that r(A) = 0 and therefore 3.35) holds
true for the case n(A) = n.

Next, consider the case 1 6 k < n. Then, by Lemma 3.4.7, we can find
vectors v1, v2, . . . , v` in Rn such that {w1, w2, . . . , wk, v1, v2, . . . , v`} is a basis
for Rn, where

k + ` = n. (3.36)

It remains to prove that
` = dim(CA); (3.37)

for, if (3.37) is true, then equation (3.36) implies (3.35) and the Dimension
Theorem for Matrices is proved.

In order to prove (3.37), consider the set

B = {Av1, Av2, . . . , Av`}.

First note that B is a subset of CA since each Avj , for j = 1, 2, . . . , `, is a linear
combinations of the columns of A.

We first see that B spans CA. To show this, let w ∈ CA. Then, w is a linear
combination of the columns of A, which implies that w = Av for some v ∈ Rn.
Since the set {w1, w2, . . . , wk, v1, v2, . . . , v`} is basis for Rn, there exist scalars
d1, d2, . . . , dk, c1, c2, . . . , c` such that

v = d1w1 + d2w2 + · · ·+ dkwk + c1v1 + c2v2 + · · ·+ c`v`.

Then

w = Av
= A(d1w1 + d2w2 + · · ·+ dkwk + c1v1 + c2v2 + · · ·+ c`v`
= d1Aw1 + d2Aw2 + · · ·+ dkAwk + c1Av1 + c2Av2 + · · ·+ c`Av`,

where we have used the distributive property of matrix multiplication and the
fact that A(cv) = cAv for all scalars c and all vectors v ∈ Rn. It then follows,
since w1, w2, . . . , wk ∈ NA, that

w = c1Av1 + c2Av2 + · · ·+ c`Av`,

which shows that w ∈ span(B) and therefore CA = span(B).
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Next, we prove that B is linearly independent. To see why why this is the
case, suppose that c1, c2, . . . , ck is a solution of the vector equation

c1Av1 + c1Av2 + · · ·+Av` = 0. (3.38)

Then, using the distributive property of the matrix product and the fact that
A(cv) = cAv for all scalars c and all vectors v ∈ Rn, we get from (3.38) that

A(c1v1 + c1v2 + · · ·+ v`) = 0,

which shows that the vector w = c1v1 + c1v2 + · · · + v` is in the null space,
NA, of the matrix A. Thus, since {w1, w2, . . . , wk} is a basis for NA, there exist
scalars d1, d2, . . . , dk such that

w = d1w1 + d2w2 + · · ·+ dkwk.

It then follows that

c1v1 + c1v2 + · · ·+ v` = d1w1 + d2w2 + · · ·+ dkwk,

from which we get that

(−d1)w1 + (−d2)w2 + · · ·+ (−dk)wk + c1v1 + c1v2 + · · ·+ v` = 0.

We now use the fact that {w1, w2, . . . , wk, v1, v2, . . . , v`} is basis for Rn to con-
clude that

c1 = c2 = · · · = c` = 0.

We have therefore shown that the only solution to the vector equation in (3.38)
is the trivial solution, and hence the set {Av1, Av2, . . . , Av`} is linearly indepen-
dent. This proves (3.37) and the proof of the Dimension Theorem for Matrices
is now complete.



Chapter 4

Linear Transformations

The main goal of this chapter and the next is solve the problem stated in Chapter
1, which has served as the motivation for theory of vector spaces and matrix
algebra that we have developed so far. The problem is simple to state:

Problem 4.0.8 (Euler’s Theorem on the Axis of Rotation (see [PPR09])).
Imagine a ball whose center is at a fixed location in three–dimensional space, but
is free to rotate about its center around any axis through the center. The center
of the ball is not allowed to move away from its fixed location. Imagine that
we perform several rotations about various axes, one after the other. We claim
that there are two antipodal points on the surface of the ball which are exactly
at the same locations they were at the beginning of the process. Furthermore,
the combination of all the rotations that we perform has the same affect on the
ball as that of a single rotation performed about the axis going through the fixed
antipodal points.

�
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��

��
�

�

In order to prove the claims stated in Problem 4.0.8, we will first model a

91
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rotation in R3 by a function,

R : R3 → R3,

which takes a point v in the ball and yields a point R(v), also in the ball, which
locates the point v after the rotation has been performed. Note that (i) every
point v in R3 is mapped to a point R(v) by the rotation (R(v) could be the same
point as v; for example, if v is on the axis of rotation, then R(v) = v); (ii) no
point in R3 gets mapped to more than one point by the rotation R. Hence, R
does indeed defines a function. It is an example of a vector valued function
defined on an Euclidean space.

4.1 Vector Valued Functions on Euclidean Space

A vector valued function,
f : Rn → Rm, (4.1)

assigns to each vector, v, in Rn one vector, f(v), in Rm. We have already seen
examples of these functions in this course. For instance, the function f : Rn → R
given by

f(v) = ‖v‖ for all v ∈ Rn,

where ‖ · ‖ denotes the Euclidean norm in Rn. In this case m = 1. Also, for a
fixed w ∈ Rn, define

f(v) = 〈w, v〉 for all v ∈ Rn,

where 〈·, ·〉 denotes the Euclidean inner product in Rn; then, f is also a map
from Rn to R.

The set Rn in (4.1) is called the domain of the function f , while Rm is
called the co-domain of f .

Definition 4.1.1 (Image). Given a function f : Rn → Rm and a subset, S, of
Rn, the image of S under f is the subset of Rm, denoted by f(S), and defined
as follows

f(S) = {w ∈ Rm | w = f(v) for some v ∈ S}.

In other words, f(S) is the set to which the vectors in S get mapped by the
function f .

Example 4.1.2 (Rotations in R2). Let Rθ : R2 → R2 denote the function that
takes every line through the origin in R2 and rotates it through an angle of θ is
the counterclockwise sense. Figure 4.1.1 shows a typical line through the origin,
L, and its image, Rθ(L) under the rotation Rθ.

Suppose that the line L is generated by a vector v 6= 0; that is, L = span{v}.
The image of v under Rθ is the vector Rθ(v) in Rθ(L). Since a rotation does
change the length of vectors, it follows that ‖Rθ(v)‖ = ‖v‖ 6= 0. Thus, the
vector Rθ(v) can be used to generate Rθ(L); that is, Rθ(L) = span{Rθ(v)}. We
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Figure 4.1.1: Image of a line under rotation

then get that for any vector w ∈ L, w = tv for some scalar t, and Rθ(tv) ∈ Rθ(L)
so that

Rθ(tv) = sRθ(v), (4.2)

for some scalar s. Again, since Rθ does not change lengths of vectors, it follows
from (4.2) that

|t|‖v‖ = |s|‖v‖,

from which w get that |t| = |s|, since v 6= 0. Observe also that, for 0 < θ < π,
Rθ does not reverse the orientation the vector v, so that t and s must have the
same sign. We therefore conclude that t = s and therefore (4.2) turns into

Rθ(tv) = tRθ(v); (4.3)

that is Rθ takes a scalar multiple of v to a scalar multiple of Rθ(v) with the
same scaling factor.

Next, consider two linearly independent vectors, v and w, in R2. The vectors
v and w generate a parallelogram defined by

P (v, w) = {tv + sw | 0 6 t 6 1, 0 6 s 6 1}

and pictured in Figure 4.1.2
Observe from the picture in Figure 4.1.2 that the diagonal of P (v, w) going

from the origin to the point determined by v + w gets mapped by Rθ by the
corresponding diagonal in the parallelogram P (Rθ(v), Rθ(w)); namely, the one
determined by Rθ(v) +Rθ(w). It then follows that

Rθ(v + w) = Rθ(v) +Rθ(w); (4.4)

that is, the rotation Rθ maps the sum of two vectors to the sum of the images
of the two vectors.
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Figure 4.1.2: Image of a parallelogram under rotation

In Example 4.1.2 we have shown that the function Rθ maps the scalar mul-
tiple of a vector to the scalar multiple of its image with the same scaling factor
(this is (4.3)), and it maps the sum of two vectors to the sum of their images
(see Equation (4.4)); in other words, Rθ preserves the vector space operations
in R2. A function satisfying the properties in (4.3) and (4.4) is said to be a
linear function. We will spend a large portion of this chapter studying linear
functions and learning about their properties. We will then see how the theory
of linear functions can be used to solve Problem 4.0.8.

4.2 Linear Functions

Definition 4.2.1 (Linear Function). A function T : Rn → Rn is said to be a
linear function, or a linear transformation, if T satisfies the properties

(i) T (cv) = cT (v) for all scalars c and all v ∈ Rn, and

(ii) T (u+ v) = T (u) + T (v) for all u, v ∈ Rn.

Example 4.2.2. Let A ∈M(m,n) and define T : Rn → Rm by

T (v) = Av for all v ∈ Rn;

that is, T (v is obtained by multiplying the column vector v by the m×n matrix
on the left. Then, T is a linear function.

To see why T is linear, use the fact that A(cv) = cAv for all scalars c and
vectors v. This proves that (i) in Definition 4.2.1. Next, use the distributive
property in matrix algebra to see that

A(v + w) = Av +Aw for all v, w ∈ Rn.

This proves that (ii) in Definition 4.2.1 holds true.
We therefore conclude that T (v) = Av, where A is an m×n matrix, defines

linear function from Rn to Rn.
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Example 4.2.3 (Reflection on the x–axis). Let R : R2 → R2 denote refection
of the x–axis; that is, for each v ∈ R2, R(v) determines a point in R2 lying on
a line through the point determined by v and perpendicular to the x–axis. The
point determined by R(v) lies on one of the two half–planes determined by the
x–axis, which is opposite to that of where the point determined by v is located,
and the distance from v to the x–axis is the same as the distance from R(v) to
the x–axis (see Figure 4.2.3).

x

y v

R(v)
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Figure 4.2.3: Reflection on the x-axis

Observe that if the coordinates of v are

(
x
y

)
, then the coordinates of R(v)

are

(
x
−y

)
. It then follows that

R

(
x
y

)
=

(
x
−y

)
,

which we can write as

R

(
x
y

)
=

(
1 0
0 −1

)(
x
y

)
.

Thus, R is of the form R(v)Av, where A is the 2× 2 matrix given by

A =

(
1 0
0 −1

)
.

Consequently, by the result presented in Example 4.2.2, R is a linear function
from R2 to R2.

Remark 4.2.4. Linear transformations form a very specialized class of vector
valued functions. It is important to bear in mind that not all functions between
Euclidean spaces are linear. For example, we have already encountered in this
course the function f : Rn → R given by

f(v) = ‖v‖ for all v ∈ Rn,

where ‖·‖ denotes the Euclidean norm in Rn. To see why f is not linear, simply
consider the case of the vectors

v =

(
1
0

)
and w =

(
−1

0

)



96 CHAPTER 4. LINEAR TRANSFORMATIONS

in R2. Observe that f(v) = 1 and f(w) = 1; however, f(v + w) = f(0) = 0.
This, f(v +w) 6= f(v) + f(w), and therefore condition (ii) in Definition 4.2.1 is
not fulfilled.

Most functions dealt with in a single variable Calculus course are not linear.
For instance, the quadratic function f(x) = x2 for all x ∈ R is not linear since

f(x+ y) = x2 + y2 + 2xy,

so that, if x and y are not 0, f(x + y) 6= f(x) + f(y). Another example is
provided by the sine function. Recall that

sin(x+ y) = cos(y) sin(x) + cos(x) sin(y).

In fact, the only linear function, f : R→ R, according to Definition 4.2.1, is

f(x) = ax for all x ∈ R,

where a is a real constant. This is essentially the one–dimensional version of
Example 4.2.2.

Functions that are not linear are usually referred in the literature as non-
linear functions, even though they actually form the bulk of functions arising
in the applications of mathematics to the sciences and engineering. So, why do
we spend a whole semester–course studying linear functions? Why not study
the class of all functions, linear and nonlinear? There are two reasons for the
in–depth study of linear functions. First, there is a rich, beautiful, complete
and well known theory of linear functions, a glimpse of which is provided in this
Linear Algebra course. Secondly, understanding linear functions provides a very
powerful and simple tool for studying nonlinear functions. A very common ap-
proach in applications is to use linear functions, when possible, to approximate
nonlinear functions. In a lot of cases, the behavior of the linear approxima-
tion near a point in Rn yields a lot of information about the nonlinear function
around that point.

We will see in the next section that the function T (v) = Av, where A is an
m×n matrix, given in Example 4.2.2 is essentially the only example of a linear
transformation form Rn to Rm.

We end this section by presenting an important class of linear transforma-
tions in Rn.

Example 4.2.5 (Orthogonal Projections). Let u denote a unit vector in Rn and
let L = span{u}; that is, L is the line through the origin in R3 in the direction
of u. For each v in Rn, we denote by Pu(v) the point in L that is the closest to
v. For instance, if v = tu, for some scalar t, then Pu(v) = Pu(tu) = tu. Thus,
Pu defines a mapping from Rn to Rn whose image, IPu , is the line L. We prove
that

Pu : Rn → Rn

is a linear function.
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Figure 4.2.4: Orthogonal Projection

Before we prove the linearity of Pu, we first get a formula for computing
Pu(v) for any v ∈ Rn. In order to do this, we define the function

f(t) = ‖v − tu‖2 for all t ∈ R;

that is, f(t) gives the square of the distance from v to the point tu on the line L.
Figure 4.2.4 shows the situation we are discussion in R3. Using the Euclidean
inner product, we can write f(t) as

f(t) = 〈v − tu, v − tu〉
= 〈v, v〉+ 〈v,−tu〉+ 〈−tu, v〉+ 〈−tu,−tu〉
= ‖v‖2 − 2t〈v, u〉+ t2‖u‖2,

where we have uses the bi–linearity of the Euclidean inner product. We therefore
get that

f(t) = ‖v‖2 − 2t〈v, u〉+ t2,

since u is a unit vector. Thus, f(t) is a quadratic polynomial in t which can be
shown to have an absolute minimum when

t = 〈v, u〉.

Hence,
Pu(v) = 〈v, u〉u.

The linearity of Pu then follows from the bi–linearity of the inner–product.

4.3 Matrix Representation of Linear Functions

In this section we show that every linear transformation from Rn to Rn can
be expressed as multiplication by an m × n matrix. In order to show this,
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observe that any vector, v, in Rn can be expressed as a linear combination of
the standard basis, En = {e1, e2, . . . , en}, in Rn; that is,

v = x1e1 + x2e2 + · · ·+ xnen,

where x1, x2, . . . , xn are the coordinates of v relative to the basis E ,

[v]En =


x1
x2
...
xn

 .

Thus, if T is a linear transformation from Rn to Rm, then

T (v) = T (x1e1 + x2e2 + · · ·+ xnen)
= T (x1e1) + T (x2e2) + · · ·+ T (xnen)
= x1T (e1) + x2T (e2) + · · ·+ xnT (en),

where we have used properties (i) and (ii) defining a linear transformation
in Definition 4.2.1. We have therefore shown that a linear transformation,
T : Rn → Rm, is completely determined by what T does to the standard basis
in Rn. Writing T (v) in terms of its coordinates relative to the standard basis
Em in Rm, we get that

[T (v)]Em = x1 [T (e1)]Em + x2 [T (e2)]Em + · · ·+ xn [T (en)]Em ; (4.5)

in other words, the coordinate vector of T (v) relative the standard basis, Em is a
linear combination of the coordinate vectors of T (e1), T (e2), . . . , T (en) relative
to Em.

The expression in (4.5) can be written in terms of the matrix product as
follows

[T (v)]Em =
[
[T (e1)]Em [T (e2)]Em · · · [T (en)]Em

]

x1
x2
...
xn

 ,

or
[T (v)]Em =

[
[T (e1)]Em [T (e2)]Em · · · [T (en)]Em

]
[v]Em (4.6)

We denote the matrix
[
[T (e1)]Em [T (e2)]Em · · · [T (en)]Em

]
in (4.6) by

MT and call it the matrix representation of T relative to the standard bases,
En and Em, in Rn and Rm, respectively, and denote it by M

T
. We then have

that
[T (v)]Em = M

T
[v]Em (4.7)

and usually write
T (v) = M

T
v (4.8)
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with the understanding that T (v) and v are expressed in terms of their coordi-
nates relative to the standard bases in Rm and Rn, respectively. The matrix rep-
resentation of T , M

T
, is obtained by computing the vectors T (e1), T (e2), . . . , T (en)

and putting them as columns in the matrix M
T

, in that order; that is,

M
T

=
[
T (e1) T (e2) · · · T (en)

]
. (4.9)

The value of T (v) is then computed by using the equation in (4.8).

Example 4.3.1 (Rotations in R2 (continued)). Let Rθ : R2 → R2 denote ro-
tation in R2 through an angle of θ is the counterclockwise sense. We saw in
Example 4.1.2 that Rθ is linear. In this example we compute the matrix rep-
resentation for Rθ. In order to do this we compute Rθ(e1) and Rθ(e2) and use
these as the columns of M

Rθ
. Inspection of the sketch in Figure 4.3.5 reveals

x
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Rθ(e2)

θ
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θ
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Figure 4.3.5: Rθ(e1) and Rθ(e2)

that

Rθ(e1) =

(
cos θ
sin θ

)
and Rθ(e2) =

(
− sin θ

cos θ

)
.

It then follows that

M
Rθ

=

(
cos θ − sin θ
sin θ cos θ

)
.

Thus, for any vector v =

(
x
y

)
in R2, the rotated image of v is given by

Rθ(v) =

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

Example 4.3.2 (Rotations in R3). Give the linear transformation,

Rz,θ : R3 → R3,

which rotates a vector around the z–axis through an angle of θ in the counter-
clockwise sense on the xy–plane.

Solution: In this case we want

Rz,θ(e1) =

cos θ
sin θ

0

 , Rz,θ(e2) =

− sin θ
cos θ
0

 , and Rz,θ(e3) =

0
0
1

 .
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We then have that the matrix representation for Rz,θ is

M
Rz,θ

=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

�

Example 4.3.3. Find a linear transformation, T : R2 → R2, which maps the
square determined by the vectors e1 and e2 to the parallelogram determined by
the vectors v1 and v2 in R2, and given by

x

y

e1

e2

R2
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Figure 4.3.6: Picture for Example 4.3.3

v1 =

(
2
1

)
and v2 =

(
1
2

)
and which are pictured in Figure 4.3.6.

Solution: We define T so that it maps e1 to v1 and e2 to v2. We then have
that

T (e1) =

(
2
1

)
and T (e2) =

(
1
2

)
.

Thus, since we want T to be linear, its matrix representation relative to the
standard basis in R2 is, according to (4.9),

MT =
[
T (e1) T (e2)

]
=

(
2 1
1 2

)
.

It then follows that

T

(
x
y

)
= MT

(
x
y

)
=

(
2 1
1 2

)(
x
y

)
,

or

T

(
x
y

)
=

(
2x+ 1
x+ 2y

)
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for all

(
x
y

)
∈ R2. Notice that this function does indeed maps the parallelogram

P (e1, e2) to the parallelogram P (v1, v2) because the point determined by

(
1
1

)
on the upper right corner of the square gets mapped to the point determined

by

(
3
3

)
and, since T is linear, lines get mapped to lines. �

Example 4.3.4. Find a linear transformation, T : R2 → R2, which maps the
parallelogram determined by the vectors

v1 =

(
2
1

)
and v2 =

(
1
2

)
to the parallelogram determined by the vectors w1 and w2 in R2,
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Figure 4.3.7: Picture for Example 4.3.4

w1 =

(
2
2

)
and w2 =

(
−1

1

)
which are pictured in Figure 4.3.7.

Solution: We define T so that it maps v1 to w1 and v2 to v2; that is, T is linear
from R2 to R2 and

T (v1) = w1 and T (v2) = w2.

Thus, since we want T to be linear, its matrix representation relative to the
standard basis in R2 is, according to (4.9),

MT =
[
T (e1) T (e2)

]
.

Thus, we need to find T (e1) and T (e2).
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Observe that v1 = 2e1+e2 and v2 = e1+2e2. Thus, by the assumed linearity
of T ,

T (v1) = 2T (e1) + T (e2)

and
T (v2) = T (e1) + 2T (e2)

We therefore get the system{
2T (e1) + T (e2) = w1

T (e1) + 2T (e2) = w2,

which can be solved for T (e1) and T (e2) to yield that

T (e1) =

(
5/3

1

)
and

T (e2) =

(
−4/3

0

)
.

It then follows that

MT =

(
5/3 −4/3

1 0

)
.

It then follows that

T

(
x
y

)
=

(
x/3− 4y/3

x

)
for all

(
x
y

)
∈ R2. �

In addition to providing a way for computing the action of linear trans-
formations on vectors in their domains, the matrix representation of a linear
transformation can be used to answer questions about the linear transforma-
tion. For instance, the null space of a linear transformation T : Rn → Rn is the
set

NT = {v ∈ Rn | T (v) = 0}.

The linearity of T implies that NT is a subspace of Rn. Observe that

v ∈ NT if and only if T (v) = 0

or
v ∈ NT if and only if MT v = 0.

It then follows that the null space of T is the same as the null space of the
matrix representation, MT , of T . Similarly, we can show that the image of T ,

IT = {w ∈ Rm | w = T (v) for some v ∈ Rn}

is the span of the columns of the matrix representation, MT , of T .
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4.4 Compositions

Given vector–valued functions T : Rn → Rm and R : Rm → Rk, we can define a
new function from Rn to Rk, which we denote by R ◦ T , as follows

R ◦ T (v) = R(T (v)) for all v ∈ Rn. (4.10)

Notice that, since T maps Rn to Rm, and Rm is the domain of R, the definition
of R ◦ T in (4.10) makes sense and yields a vector in Rk. We call the function

R ◦ T : Rn → Rk

define in (4.10) the composition of R and T . Intuitively, the conposition of
R and T is the successive application of T and R, in that order.

It is not hard to show that, if both T and R are linear functions, then the
composition R ◦ T is a linear function as well. In fact, for v, w ∈ Rn we have
that

R ◦ T (v + w) = R(T (v + w)) = R(T (v) + T (w)),

since T is linear (here we used property (ii) in Definition 4.2.1). Applying next
the linearity of R, we then get that

R ◦ T (v + w) = R(T (v)) +R(T (w)) = R ◦ T (v) +R ◦ T (w).

This verifies condition (ii) in Definition 4.2.1.
We verify condition (i) in Definition 4.2.1 in a similar way:

R ◦ T (cv) = R(T (cv)) = R(cT (v)) = cR(T (v)) = cR ◦ T (v).

We next see how the matrix representation for R ◦ T relates to the matrix
representations for R and T . We have the following proposition:

Proposition 4.4.1. Let T : Rn → Rm and R : Rm → Rk denote linear functions
with corresponding matrix representations MT ∈ M(m,n) and MR ∈ M(k,m),
respectively, with respect to the standard basis in Rn, Rm and Rk. Then, the
matrix representation of the composition R ◦ T : Rn → Rk, with respect to the
standard bases in Rnand Rk, is given by

MR◦T = MRMT ;

that is, the matrix representation of a composition of linear functions is the
matrix product of their matrix representations.

Proof: Compute R ◦ T (ej) for j = 1, 2, . . . , n to get

R ◦ T (ej) = R(T (ej) = R(MT ej),

since MT is the matrix representation of T relative to the standard basis in Rn
and Rm. Using the same result for R we get

R ◦ T (ej) = R(T (ej) = MRMT ej for j = 1, 2, . . . , n.

Thus, the columns of MR◦T are the columns of the matrix product MRMT and
the result follows.
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Example 4.4.2 (Rotations in R3 continued). We saw in Example 4.3.2 that

M
Rz,θ

=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


is the matrix representation for a rotation around the z–axis through an angel
of θ in a direction that moves the positive x–axis towards the positive y–axis
(see Figure 4.4.8).
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Figure 4.4.8: Positive rotation in R3 around the z–axis through an angle θ

A similar calculation to that used to obtain M
Rz,θ

shows that the matrix

representation of for a rotation, Ry,ϕ : R3 → R3, around the y–axis through an
angel of ϕ in a direction that moves the positive x–axis towards the positive
z–axis is given by

M
Ry,ϕ

=

 cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ


Suppose we perform a positive rotation around the z–axis through an angle
θ followed by a positive rotation around the y–axis through an angle ϕ. Let
R : R3 → R3 denote the linear transformation which which performs the two
rotations in succession; then,

R = Ry,ϕ ◦Rz,θ

and, therefore, by the result of Proposition 4.4.1,

MR = M
Ry,ϕ

M
Rz,θ

.
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we then have the matrix for the transformation that combines the two rotations
in succession is

MR =

 cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

or

MR =

 cosϕ cos θ − cosϕ sin θ − sinϕ
sin θ cos θ 0

sinϕ cos θ − sinϕ sin θ cosϕ

 . (4.11)

Our solution to Problem 4.0.8 will show that R corresponds to a single rotation
about some axis through the origin. We will eventually learn how to determine
the axis and the angle of rotation.

Remark 4.4.3. Note that, like matrix multiplication, composition of functions
is associative. In fact, let T : Rn → Rm, R : Rm → Rk and S : Rk → Rp be
functions. Then,

(T ◦R) ◦ S(v) = T ◦R(S(v))
= T (R(S(v)))
= T (R ◦ S(v))
= T ◦ (R ◦ S)(v)

for all v ∈ Rn. It then follows that

(T ◦R) ◦ S = T ◦ (R ◦ S).

Function composition also distributes with the sum of functions. Let T : Rm →
Rm, R : Rm → Rk and S : Rm → Rk. We can then define the sum of R and S
as follows:

(R+ S)(w) = R(w) + S(w) for all w ∈ Rm.

Note that this definition is possible because there is a vector addition defined
in Rk. We can then prove that

(R+ S) ◦ T = R ◦ T + S ◦ T.

To see why this is the case, observe that, for every v ∈ Rn

(R+ S) ◦ T (v) = (R+ S)(T (v)
= R(T (v)) + S(T (v))
= R ◦ T (v) + S ◦ T (v)
= (R ◦ T + S ◦ T )(v).

Similarly, if T : Rn → Rn, R : Rn → Rm and S : Rm → Rk,

S ◦ (T +R) = S ◦ T + S ◦R.
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Given a linear transformation T : Rn → Rn, if MT is an invertible matrix,
then we can define the transformation R : Rn → Rn by

R(w) = M−1T w for all w ∈ Rn.

It then follows that

R ◦ T (v) = R(MT v) = M−1T MT v = Iv = v.

That is, R◦T maps every vector, v, in Rn to itself. This transformation is called
the identity transformation and we denote it by I. We then have that

R ◦ T = I.

Similarly,

T ◦R = I.

Definition 4.4.4 (Invertible Transformations). A function f : Rn → Rn is said
to be invertible if there exists a function g : Rn → Rn such that

f ◦ g = g ◦ f = I,

where I : Rn → Rn denotes the identity function; that is,

I(v) = v for all v ∈ Rn.

The function g is called the inverse of f , and f is the inverse of g. We usually
denote g by f−1.

We have just seen that if T : Rn → Rn is linear and its matrix representation,
MT , is invertible, then T is invertible and the inverse of T is given by

T−1(v) = M−1T v for all v ∈ Rn.

4.5 Orthogonal Transformations

The matrix representation, MR, given in (4.11) for the linear transformation R
given in Example 4.6.15 has the following interesting property: If we write MR

in terms if its columns, u1, u2 and u3, then it is not hard to check that

‖u1‖ = 1, ‖u2‖ = 1, ‖u3‖ = 1,

and

〈ui, uj〉 = 0 for i 6= j.
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It then follows that

MT
RMR =

uT1uT2
uT3

[u1 u2 u3
]

=

uT1 u1 uT1 u2 uT1 u3
uT2 u1 uT2 u2 uT2 u3
uT3 u1 uT3 u2 uT3 u3



=

1 0 0
0 1 0
0 0 1

 .

Thus,

MT
RMR = I.

Definition 4.5.1 (Orthogonal Matrix). An n × n matrix, A, is said to be
orthogonal if

ATA = I,

where I denotes the identity matrix in M(n, n).

Thus, an n×n orthogonal matrix is invertible and its inverse is its transpose.

Definition 4.5.2 (Orthogonal Transformations). A linear transformation, R : Rn →
Rn, is said to be orthogonal if its matrix representation MR is orthogonal.

Proposition 4.5.3 (Properties of Orthogonal Transformations (Part I)). Let
R : Rn → Rn denote an orthogonal transformation. Then,

(i) 〈R(v), R(w)〉 = 〈v, w〉 for all v, w ∈ Rn.

That is, an orthogonal transformation preserve the Euclidean inner prod-
uct.

(ii) ‖R(v)‖ = ‖v‖

That is, an orthogonal transformation preserve the Euclidean norm, or
length, of vectors.

Proof of (i): Assume R : Rn → Rn is orthogonal. Then, its matrix representa-
tion, MR, satisfies

MT
RMR = I,
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where I is the n× n identity matrix. Thus, for v and w in Rn,

〈Rv,Rw〉 = 〈MRv,MRw〉

= (MRv)TMRw

= vTMT
RMRw

= vT Iw

= vTw

= 〈v, w〉.

The second part of Proposition 4.5.3 is a straightforward consequence of the
first part.

The first part of Proposition 4.5.3 can be interpreted geometrically as saying
that orthogonal transformations preserve angles between vectors.

Example 4.5.4. In this example we see the connection of Euclidean inner
product of two vectors and the angle between the vectors. We consider the
situation in the xy–plane. Let u denote a unit vector in R2 and suppose that u
makes an angle of ϕ with the positive x–axis; that is ϕ is the angle between u
and e1 (see Figure 4.5.9 ). We then have that

x

y

u

ϕ

e1
�
��

�
��*

-

Figure 4.5.9: Angle between u and e1

u =

(
cosϕ
sinϕ

)
,

since ‖u‖ = 1. Consequently,

〈e1, u〉 = cosϕ.

That is, the inner product of the unit vectors e1 and u is the cosine of the angle
between them.

Next, consider two unit vectors, u1 and u2, whose angle is ϕ pictured in
Figure 4.5.10.
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x

y

u1

u2

θ

ϕ

��
��

��*

�
�
�
�
�
��

Figure 4.5.10: Angle between u1 and u2

Let θ denote the angle that u1 in Figure 4.5.10 makes with the positive x–
axis. Apply a rotation around the origin through an angle θ in the clockwise
sense. This is the linear function R−θ : R2 → R2 whose matrix representation is

M
R−θ

=

(
cos θ sin θ
− sin θ cos θ

)
.

Observe that M
R−θ

is an orthogonal matrix. The result of applying the rotation

R−θ then yields situation like the one picture in Figure 4.5.11. Observe that

x

y

R−θ(u2)

ϕ

R−θ(u1)

�
��

�
��*

-

Figure 4.5.11: Angle between R−θ(u1) and R−θ(u1)

R−θ(u1) = e1. Thus, since R−θ is orthogonal,

〈u1, u2〉 = 〈R−θ(u1), R−θ(u2)〉
= 〈e1, R−θ(u2)〉
= cosϕ.

To see why the last equality it true, assume that the vectors u1 and u2 and the
angles θ and ϕ are as pictured in Figure 4.5.10. Then, it is the case that

u2 =

(
cos(θ + ϕ)
sin(θ + ϕ)

)
=

(
cos θ cosϕ− sin θ sinϕ
sin θ cosϕ+ cos θ sinϕ

)
,

which we can write in matrix form as

u2 =

(
cos θ − sin θ
sin θ cos θ

)(
cosϕ
sinϕ

)
= Rθ

(
cosϕ
sinϕ

)
,
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from which we get that

R−θu2 =

(
cosϕ
sinϕ

)
.

It then follows that

〈u1, u2〉 = cosϕ;

that is, the Euclidean inner product of the unit vectors u1 and u2 is the cosine
of the angle between them.

The second part of Proposition 4.5.3 says that orthogonal transformations
preserve lengths. Thus, orthogonal transformations preserve angles and lengths.
It is reasonable, therefore, to expect that orthogonal transformations preserve
areas and volumes of parallelograms and parallelepipeds, respectively. We will
see why this is the case in the next section.

4.6 Areas, Volumes and Orientation

4.6.1 Areas of Parallelograms

Two linearly independent vectors, v and w, in Rn determine a parallelogram

P (v, w) = {tv + sw | 0 6 t 6 1, 0 6 s 6 1}.

We would like to compute the area of P (v, w). Figure 4.6.12 shows P (v, w) for
the special situation in which v and w lie in the first quadrant in the xy–plane.
R2 We can see from the picture in Figure 4.6.12 that the area of P (v, w) is given

x

y
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�
��
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�*

�
�
�
�
�
���

��
�
��*

v

w
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d

h

Pu(w)

A
A
A
AA
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��
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Figure 4.6.12: Parallelogram P (v, w) in the xy–plane

by

area(P (v, w)) = ‖v‖h, (4.12)
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where h is the distance from the point determined by w to the line spanned by
v. In order to compute h, let u denote a unit vector in the direction of v; that
is,

u =
1

‖v‖
v. (4.13)

Recall that the orthogonal projection of w onto the direction of u,

Pu(w) = 〈w, u〉u, (4.14)

gives the point on the line spanned by u which is closest to w. We then see that
the norm of the vector w − Pu(w) is the shortest distance from w to the line
spanned by v. Consequently, h = ‖w−Pu(w)‖. Substituting this expression for
h into the expression for area(P (v, w)) in Equation (4.12) and squaring both
sides of the equation then yields

(area(P (v, w)))2 = ‖v‖2‖w − Pu(w)‖2

= ‖v‖2〈w − Pu(w), w − Pu(w)〉

= ‖v‖2(‖w‖2 − 2〈w,Pu(w)〉+ ‖Pu(w)‖2)

= ‖v‖2
(
‖w‖2 − 2

〈
w,
〈v, w〉
‖v‖2

v

〉
+
〈v, w〉2

‖v‖2

)

= ‖v‖2
(
‖w‖2 − 2

〈v, w〉
‖v‖2

〈w, v〉+
〈v, w〉2

‖v‖2

)

= ‖v‖2
(
‖w‖2 − 2

〈v, w〉2

‖v‖2
+
〈v, w〉2

‖v‖2

)
= ‖v‖2‖w‖2 − 〈v, w〉2,

where we have used the properties of the Euclidean inner product, the definition
of Pu(w) in (4.14), and the fact that u is the unit vector given in (4.13). We
have therefore shown that

(area(P (v, w)))2 = ‖v‖2‖w‖2 − 〈v, w〉2. (4.15)

4.6.2 Determinant of 2× 2 matrices

Applying formula (4.15) to the case in which the vectors v and w lie in R2 and
have coordinates (

a
c

)
and

(
b
d

)
,
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respectively, we can write (4.15) as

(area(P (v, w)))2 = ‖v‖2‖w‖2 − (v · w)2

= (a2 + c2)(b2 + d2)− (ab+ cd)2

= a2b2 + a2d2 + c2b2 + c2d2 − (a2b2 + 2abcd+ c2d2)

= a2d2 + c2b2 − 2adbc

= (ad)2 − 2(ad)(bc) + (bc)2

= (ad− bc)2.

Taking square roots on both sides we then have that

area(P (v, w)) = |ad− bc|. (4.16)

Definition 4.6.1 (Determinant of a 2 × 2 matrix). The expression ad − bc in
(4.16) is called the determinant of the 2× 2 matrix

A =

(
a b
c d

)
.

We denote the determinant of A by det(A) or |A|. We then have that

det(A) = ad− bc,

or ∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

Thus, the expression in (4.16) for the area of the parallelogram, P (v, w),
determined by the vectors v and W in R2 can be written as

area(P (v, w)) = |det([ v w ])|; (4.17)

that is, the area of P (v, w) is the absolute value of the determinant of the 2× 2
matrix, [ v w ], whose columns are the vectors v and w.

The following properties of the determinant for a 2×2 matrices can be easily
verified.

Proposition 4.6.2 (Properties of determinants of 2×2 matrices). Let A denote
a 2× 2 matrix, v, v1, v2, w ∈ R2 and c denote a scalar. Then,

(i) det(I) = 1, where I denotes the 2× 2 identity matrix.

(ii) det(AT ) = det(A), where AT denotes the transpose of A.
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(iii) det([ v w ]) = − det([ w v ]); that is, switch the columns of A once
changes the sign of the determinant of A.

(iv) If the columns of A are linearly dependent, then det(A) = 0. Conversely,
if det(A) = 0, then the columns of A are linearly dependent.

(v) det([ cv w ]) = cdet([ v w ]).

(vi) det([ v1 + v2 w ]) = det([ v1 w ]) + det([ v2 w ]).

(vii) det([ v cv + w ]) = det([ v w ]).

(viii) det(A) 6= 0 if an only if A is invertible.

(ix) det(A) = 0 if and only if A is singular; that is, det(A) = 0 if and only if
the equation Ax = 0 has nontrivial solutions.

Definition 4.6.3 (Determinant of a linear function in R2). The determinant of
a linear function, T : R2 → R2, is the determinant of its matrix representation
relative to the standard basis in R2; that is,

det(T ) = det(MT ).

Example 4.6.4. The determinant of the rotation, Rθ : R2 → R2, is

det(Rθ) =

∣∣∣∣ cos θ − sin θ
sin θ cos θ

∣∣∣∣ = cos2 θ + sin2 θ = 1.

Example 4.6.5. Let T : R2 → R2 denote reflection across the y–axis. Then,

T

(
x
y

)
=

(
−x
y

)
,

so that

MT =

(
−1 0

0 1

)
Thus,

det(T ) = −1.

Observe that the transformations Rθ and T in the previous two examples
are orthogonal; therefore, it is not surprising that they they preserve areas of
parallelogram. In fact, given an orthogonal transformation, R : R2 → R2, the
area of the transformed parallelogram P (R(v), R(w)) can be computed using
(4.15) as follows

(area(P (R(v), R(w))))2 = ‖R(v)‖2‖R(w)‖2 − 〈R(v), R(w)〉2

= ‖v‖2‖w‖2 − 〈v, w〉2

= (area(P (v, w)))2,
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where we have used Proposition 4.5.3. It then follows that

area(P (R(v), R(w))) = area(P (v, w)); (4.18)

that is, orthogonal transformations preserve areas of parallelograms.
We can use (4.17) to write (4.18) in terms of the determinant of an orthogonal

transformation from R2 to R2; in fact, applying (4.18) to the unit parallelogram
P (e1, e2) in R2 we obtain that

|det([ R(e1) R(e2) ])| = |det(I)| = 1.

It then follows that, for any orthogonal transformation, R : R2 → R2,

|det(R)| = 1.

Thus, there are two possibilities for the determinant of an orthogonal transfor-
mation, either 1 or −1. Examples 4.6.4 and 4.6.5 show these two possibilities
for the case of a rotation and a reflection, respectively. It turns out the sign
of the determinant is what distinguishes rotations from reflections. The deter-
minant of a rotation is 1, while that of a reflection is −1. We will see that a
positive determinant implies that the transformation preserves “orientation,”
while a negative determinant implies that it reverses “orientation.” In order to
see this, we first need to define the term “orientation.” This will be done after
we have defined the determinant of an n× n matrix for n > 3. However, before
we do that, we will first define a special products of vectors in R3 known as the
cross product and the triple scalar product in the next section. In the next
section we deal with the simpler task of defining orientation in R2.

4.6.3 Orientation in R2

Given an ordered basis, B = {v1, v2}, we say that B has a positive orientation if

det([ v1 v2 ]) > 0.

If det([ v1 v2 ]) < 0, we say that B has a negative orientation. For example,
the standard, ordered basis, E2 = {e1, e2}, in R2 has a positive orientation since

det([ e1 e2 ]) = det(I) = 1 > 0.

On the other hand, the ordered basis B = {e2, e1} has a negative orientation.

Definition 4.6.6 (Orientation Preserving Transformation in R2). A linear
transformation T : R2 → R2 is said to be orientation preserving if

det(T ) > 0;

that is, if
det([ T (e1) T (e2) ]) > 0.
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Example 4.6.7 (Orientation Preserving Orthogonal, Transformations in R2).
In this example we see that an orthogonal transformation, R : R2 → R2, which
preserves orientation must be a rotation around the origin.

Let MR =

(
a b
c d

)
denote the matrix representation for for R relative to

the standard basis in R2. Then, since R is orthogonal, M−1R = MT
R , where

M−1R =
1

det(R)

(
d −b
−c a

)
=

(
d −b
−c a

)
,

since det(R) = 1, and

MT
R =

(
a c
b d

)
.

It then follows that a = d and b = −c. We then have that the matrix represen-
tation of R relative to the standard basis in R2 must be of the form

MR =

(
a −c
c a

)
,

where

a2 + c2 = 1.

Setting sin θ = c and cos θ = a, we then see that R = Rθ; that is, R is rotation
around the origin by θ. If c > 0, we set θ = arccos(a), which is an angle between
0 and π, and so R is a rotation in the counterclockwise sense. On the other
hand, if c < 0, we set θ = − arccos(a), and so R is a rotation in the clockwise
sense. If c = 0, R is the identity for a = 1, or R is rotation by π for a = −1.

4.6.4 The Cross–Product

Given two linearly independent vectors, v and w, in R3, we would like to asso-
ciate to them a vector, denoted v × w and called the cross product of v and w,
satisfying the following properties:

• v × w is orthogonal to the plane spanned by v and w.

• There are two choices for a perpendicular direction to the span of v and
w. The direction for v×w is determined according to the so called “right–
hand rule”:

With the fingers of your right hand, follow the direction of v
while curling them towards the direction of w. The thumb will
point in the direction of v × w.

• The norm of v × w is the area of the parallelogram, P (v, w), determined
by the vectors v and w.
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Example 4.6.8. Suppose that v and w lie in the xy–plane and write

v =

 a
c
0

 and w =

 b
d
0

 .

Then,

v × w =

∣∣∣∣ a b
c d

∣∣∣∣ e3. (4.19)

Observe that e3 is orthogonal to the xy–plane and therefore v×w is orthogonal
to the plane spanned by v and w. Furthermore, for v × w given by (4.19),

‖v × w‖ = |ad− bc| = area(P (v, w)),

by the calculations leading to (4.16). Finally, to check that (4.19) gives the
correct direction for v × w, according to the right–hand rule, observe that, for
v = e1 and w = e2, the formula in (4.19) yields

e1 × e2 = e3, (4.20)

which is in agreement with the right–hand rule as shown in Figure 4.6.13

�
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���
�����

H
HHH

HHH
HHHHj

6

x y

z

e1 e2

e3

�
���

���

H
HHH

HHj

6

Figure 4.6.13: Right–hand Rule

Using the illustration in Figure 4.6.13 we also get that cross–product rela-
tions for the vectors in the standard basis in R3:

e1 × e3 = −e2, (4.21)

and
e2 × e3 = e1. (4.22)
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Observe that, from the definition in (4.19),

w × v =

∣∣∣∣ b a
d c

∣∣∣∣ e3 = −
∣∣∣∣ a b
c d

∣∣∣∣ e3 = −v × w.

Thus, the anti–symmetry relation,

w × v = −v × w, (4.23)

is inherent in the definition of v × w given so far. Observe that (4.23) implies
that

v × v = 0 for all v ∈ R3. (4.24)

To complete the definition of the cross product in R3, we require that it be
bi–linear; that is, v × w is linear in both variables v and w; that is,

(c1v1 + c2v2)× w = c1v1 × w + c2v2 × w, (4.25)

and
v × (d1w1 + d2w2) = d1v × w1 + d2v × w2, (4.26)

for all vectors v, v2, v3, w, w1 and w2 in R3 and all scalars c1, c2, d1 and d2.
The relations in (4.20), (4.21 and (4.22) for the cross products of the vectors

in the standard basis in R3, the anti–symmetry relation in (4.23) and the bi–
linearity relations in (4.25) and (4.26) can be used to define the cross product
in R3 as follows: Given vectors

v =

 a1
a1
a1

 and w =

 b1
b2
b3

 ,

write then in terms of the standard basis in R3,

v = a1e1 + a2e2 + a3e3,
w = b1e1 + b2e2 + b3e3.

Then,

v × w = (a1e1 + a2e2 + a3e3)× (b1e1 + b2e2 + b3e3)

= a1b2 e1 × e2 + a1b3 e1 × e3 + a2b1 e2 × e1
+a2b3 e2 × e3 + a3b1 e3 × e1 + a3b2 e3 × e2,

where we have used the bi-linearity relations and (4.24). Thus, using the rela-
tions in (4.20), (4.21 and (4.22), we get that

v × w = a1b2 e3 − a1b3 e2 − a2b1 e3 + a2b3 e1 + a3b1 e2 − a3b2 e1,

which we could re–arrange as

v × w = (a2b3 − a3b2) e1 − (a1b3 − a3b1) e2 + (a1b2 − a2b1) e3.
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We can write this vector product in terms of the determinants of the 2 × 2
matrices (

a2 b2
a3 b3

)
,

(
a1 b1
a3 b3

)
, and

(
a1 b1
a2 b2

)
as follows

v × w =

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣ e1 − ∣∣∣∣ a1 b1
a3 b3

∣∣∣∣ e2 +

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ e3. (4.27)

We take (4.27) as our definition of the cross product of the vectors

v =

 a1
a1
a1

 and w =

 b1
b2
b3


in R3.

We presently verify that the cross product, v × w, satisfies the required
properties stated at the beginning of this section. Specifically, we verify that

• v × w is orthogonal to the plane spanned by v and w;

and

• the norm of v × w is the area of the parallelogram, P (v, w), determined
by the vectors v and w.

First, we verify that v × w is orthogonal to v by computing

〈v, v × w〉 = a1

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣− a2 ∣∣∣∣ a1 b1
a3 b3

∣∣∣∣+ a3

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣
= a1(a2b3 − a3b2)− a2(a1b3 − a3b1) + a3(a1b2 − a2b1)

= 0.

Similarly, we can compute 〈w, v × w〉 = 0. Therefore, v × w is orthogonal to
both v and w.

Calculations involving the definition of the Euclidean inner product and
norm can be used to show that, if v × w is given by (4.27), then

‖v × w‖2 = ‖v‖2‖w‖2 − 〈v, w〉2.

which, by virtue of (4.15) shows that

‖v × w‖ = area(P (v, w)).

Thus, the norm of v × w is the area of the parallelogram, P (v, w), determined
by the vectors v and w.
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4.6.5 The Triple–Scalar Product

Given vectors u, v and w in R3, whose coordinates relative to the standard basis
in R3 are

u =

c1c2
c3

 , v =

a1a2
a3

 and w =

b1b2
b3

 ,

respectively, we define the triple scalar product of u, v and w to be

〈u, v × w〉 = c1

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣− c2 ∣∣∣∣a1 b1
a3 b3

∣∣∣∣+ c3

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ . (4.28)
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Figure 4.6.14: Volume of Parallelepiped

Geometrically, the absolute value of the triple scalar product 〈u, v×w〉 is the
volume of the parallelepiped generated by the vectors u, v and w. To see why
this is so, denote by P (v, w, u) the parallelepiped spanned by v, w, and u, and
by P (v, w) the parallelogram spanned by v and w. Observe that the volume
of the parallelepiped drawn in Figure 4.6.14 is the area of the parallelogram
spanned by v and w times the height, h, of the parallelepiped:

volume(P (v, w, u)) = area(P (v, w)) · h, (4.29)

where h can be obtained by projecting u onto the cross–product, v × w, of v
and w; that is

h = ‖Pn(u)‖ =

∥∥∥∥ 〈u, n〉‖n‖2
n

∥∥∥∥ ,
where

n = v × w.
We then have that

h =
|〈u, v × w〉|
‖v × w‖

.

Consequently, since area(P (v, w)) = ‖v × w‖, we get from (4.29) that

volume(P (v, w, u)) = |〈u, v × w〉|. (4.30)



120 CHAPTER 4. LINEAR TRANSFORMATIONS

4.6.6 Determinant of 3× 3 matrices

We can use the triple scalar product of vectors in R3 to define the determinant
of a 3× 3 matrix, A, as follows:

Definition 4.6.9 (Determinant of a 3×3 matrix). Write the matrix A in terms
of its columns,

A = [ v1 v2 v3 ],

where v1, v2 and v3 are vectors in R3. We define det(A) to be the triple scalar
product of v1, v2 and v3, in that order; that is,

det(A) = 〈v1, v2 × v3〉. (4.31)

Thus, for A given by

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

using (4.31) and the definition of the triple scalar product in (4.28), we obtain
the formula

det(A) = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a21 ∣∣∣∣a12 a13
a32 a33

∣∣∣∣+ a31

∣∣∣∣a12 a13
a22 a23

∣∣∣∣ . (4.32)

Using the expression in (4.30) for the volume of a parallelepiped and (4.31)
we then obtain that

volume(P (v1, v2, v3)) = |det([ v1 v2 v3 ])|; (4.33)

that is, the volume of P (v1, v2, v3) is the absolute value of the determinant of
the 3× 3 matrix, [ v1 v2 v3 ], whose columns are the vectors v1, v2 and v3.

Using the definition of the determinant of a 3 × 3 matrix as a triple scalar
product, or that given in (4.32), we can can derive the following properties for
the determinant of 3× 3 matrices,

Proposition 4.6.10 (Properties of determinant of 3×3 matrices). Let A denote
a 3× 3 matrix, u, u1, u2, v, w ∈ R3 and c denote a scalar. Then,

(i) det(I) = 1, where I denotes the 3× 3 identity matrix.

(ii) det(AT ) = det(A), where AT denotes the transpose of A.

(iii) det([ v u w ]) = −det([ u v w ]), det([ w v u ]) = −det([ u v w ])
and det([ u w v ]) = −det([ u v w ]); that is, swapping two columns
of A once changes the sign of the determinant of A.

(iv) If the columns of A are linearly dependent, then det(A) = 0. Conversely,
if det(A) = 0, then the columns of A are linearly dependent.
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(v) det([ cu v w ]) = c·det([ u v w ]); det([ u cv w ]) = c·det([ u v w ]);
and det([ u v cw ]) = c · det([ u v w ]).

(vi) det([ u1 + u2 v w ]) = det([ u1 v w ]) + det([ u2 v w ]);
det([ u v1 + v2 w ]) = det([ u v1 w ]) + det([ u v2 w ]); and
det([ u v w1 + w2 ]) = det([ u v w1 ]) + det([ u v w2 ]).

(vii) det([ u cu+ v w ]) = det([ u v w ]) and
det([ u v cu+ w ]) = det([ u v w ]).

(viii) det(A) 6= 0 if an only if A is invertible.

(ix) det(A) = 0 if and only if A is singular; that is, det(A) = 0 if and only if
the equation Ax = 0 has nontrivial solutions.

Remark 4.6.11. These properties can be derived from the definition of the
determinant of A ∈ M(3, 3) as the triple–scalar product of the columns of A
(see the formulas in (4.31) and (4.28)), or the formula for det(A) in (4.32), and
the interpretation of |det(A)| as the volume of the parallelepiped generated by
the columns of A (see (4.30)). For instance, to prove part (ii) of Proposition
4.6.10, write

A =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 .

Then, using the definition of det(A) in (4.31) and (4.28), we have that

det(A) = a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣− a2 ∣∣∣∣ b1 c1
b3 c3

∣∣∣∣+ a3

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣
= a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

= a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

= a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− a2b1c3 + a3b1c2 + a2b3c1 − a3b2c1

= a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− b1(a2c3 − a3c2) + c1(a2b3 − a3b2)

= a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− b1 ∣∣∣∣ a2 a3
c2 c3

∣∣∣∣+ c1

∣∣∣∣ a2 a3
b2 b3

∣∣∣∣
= det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 ,
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where we have used again the definition of the determinant in (4.32). Observe
that the matrix  a1 a2 a3

b1 b2 b3
c1 c2 c3


is the transpose of A, and therefore part (ii) of Proposition 4.6.10 follows

Definition 4.6.12 (Triangular Matrices). A 3 × 3 matrix, A = [aij ], is said
to be upper triangular if aij = 0 for i > j. A = [aij ], is said to be lower
triangular if aij = 0 for i < j.

Proposition 4.6.13 (Determinants of 3×3 triangular matrices). Let A = [aij ]
be 3× 3 upper triangular or lower triangular matrix. Then,

det(A) = a11 · a22 · a33.

Proof: Assume that A is upper triangular; so that

A =

a11 a12 a13
0 a22 a23
0 0 a33

 .

Then, using the definition of det(A) in (4.32),

det(A) = a11

∣∣∣∣ a22 a23
0 a33

∣∣∣∣− 0 ·
∣∣∣∣a12 a13

0 a33

∣∣∣∣+ 0 ·
∣∣∣∣a12 a13
a22 0

∣∣∣∣ = a11 · a22 · a33,

which was to be shown.
If A is upper triangular, then AT is lower triangular; then, the result just

proved and part (ii) of Proposition 4.6.10 imply that det(A) = det(AT ) =
a11 · a22 · a33.

Definition 4.6.14 (Determinant of a linear function in R3). The determinant
of a linear function, T : R3 → R3, is the determinant of its matrix representation
relative to the standard basis in R2; that is,

det(T ) = det(MT ).

Example 4.6.15. Let R : R3 → R3 denote the transformation obtained in
Example 4.6.15 as the composition of two rotations: R = Ry,ϕ ◦ Rz,θ. We saw
in Example 4.6.15 that

MR =

 cosϕ cos θ − cosϕ sin θ − sinϕ
sin θ cos θ 0

sinϕ cos θ − sinϕ sin θ cosϕ

 . (4.34)
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We compute det(MR) using the formula for the triple scalar product in (4.28)
to get

det(MR) = cosϕ cos θ

∣∣∣∣ cos θ 0
− sinϕ sin θ cosϕ

∣∣∣∣
+ cosϕ sin θ

∣∣∣∣ sin θ 0
sinϕ cos θ cosϕ

∣∣∣∣
− sinϕ

∣∣∣∣ sin θ cos θ
sinϕ cos θ − sinϕ sin θ

∣∣∣∣
= cos2 ϕ cos2 θ + cos2 ϕ sin2 θ + sinϕ(sinϕ sin2 θ + sinϕ cos2 θ)

= cos2 ϕ+ sin2 ϕ

= 1.

It the follows that det(R) = 1.

In what remains of this section, we will prove the following important prop-
erty of the determinant function:

Proposition 4.6.16. Let A and B denote 3× 3 matrices. Then,

det(AB) = det(A) det(B). (4.35)

As an application of Proposition 4.6.16, we prove the following

Proposition 4.6.17. For any scalar c and any 3× 3 matrix B

det(cB) = c3 det(B).

Proof: We first prove the result for the 3× 3 identity matrix; namely,

det(cI) = c3,

which follows from Proposition 4.6.13 because

cI =

c 0 0
0 c 0
0 0 c


is a triangular matrix.

Next, apply Proposition 4.6.16 with A = cI to get

det(cB) = det[(cI)B] = det(cI) det(B) = c3 det(B).



124 CHAPTER 4. LINEAR TRANSFORMATIONS

The proof of Proposition 4.6.16 will proceed by stages. We will prove first
the case in which A is singular and then prove the case in which A is nonsingular.
The case in which A is nonsingular will also proceed by stages by first considering
the case in which A is an elementary matrix.

Proposition 4.6.18. Let A and B be 3× 3 matrices. If A is singular, then

det(AB) = 0, (4.36)

for any 3× 3 matrix B.

Proof: Assume that A is a 3 × 3 singular matrix. The proof of (4.36) will
follow from part (ix) of Proposition 4.6.10 once we establish the fact that A is
singular implies that AB is singular for any 3 × 3 matrix B. Assume, by way
of contradiction that AB is nonsingular; it then follows that (AB)T = BTAT

is nonsingular. Since we are assuming that A is singular, we obtain from parts
(ii) and (ix) of Proposition 4.6.10 that AT is singular; so, there exists v ∈ R3,
v 6= 0, such that

AT v = 0;

thus,
BTAT v = 0, for v 6= 0,

which shows that BTAT is singular. This is a contradiction; hence, AB is
singular if A is singular, and (4.36) follows.

Lemma 4.6.19. Let B be a 3 × 3 matrix and E an elementary 3 × 3 matrix.
Then

det(EB) = det(E) det(B). (4.37)

Proof: There are three kinds of elementary matrices: (i) those obtained from
the 3× 3 identity matrix by interchanging two rows; for example,

E1 =

0 1 0
1 0 0
0 0 1

 ; (4.38)

(ii) those obtain from the 3 × 3 identity matrix by multiplying a row by a
constant c; for example,

E2 =

1 0 0
0 c 0
0 0 1

 ; (4.39)

and (iii) those obtained from the 3× 3 identity matrix by adding a multiple of
one row to another row and putting the result in the latter row; for example,

E3 =

1 0 0
c 1 0
0 0 1

 . (4.40)



4.6. AREAS, VOLUMES AND ORIENTATION 125

Next, we compute the determinants of the matrices E1, E2 and E3 in (4.38),
(4.39) and (4.40), respectively.

Note that E1 = [e2 e1 e3]; so that, by part (iii) of Proposition 4.6.10,

det(E1) = −det([e1 e2 e3] = −1. (4.41)

Since matrices E2 and E3 are triangular matrices, we can use Proposition 4.6.13
to compute

det(E2) = c, (4.42)

and
det(E3) = 1. (4.43)

Write B =

R1

R2

R3

 , where Ri ∈ M(1, 3), for i = 1, 2, 3, are the rows of B.

Then,

E1B =

R2

R1

R3

 ;

so that
(E1B)T = [RT2 RT1 RT3 ];

Thus,
det((E1B)T ) = −det([RT1 RT2 RT3 ]), (4.44)

where we have used part (iii) of Proposition 4.6.10. It follows from (4.44) and
part (ii) of Proposition 4.6.10 that

det(E1B) = −det(B). (4.45)

Combining (4.45) and (4.41) then yields

det(E1B) = det(E1) det(B). (4.46)

Next, note that

E2B =

R1

cR2

R3

 ;

thus, (E2B)T = [RT1 cRT2 RT3 ] and, using part (v) of Proposition 4.6.10,

det[(E2B)T ] = cdet[RT1 RT2 RT3 ] = cdet(BT ).

Hence, by virtue of part (ii) of Proposition 4.6.10,

det(E2B) = cdet(B). (4.47)

Combining (4.42) and (4.47) we get

det(E2B) = det(E2) det(B). (4.48)
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Next, observe that

E3B =

 R1

cR1 +R2

R3

 ;

so that
(E3B)T = [RT1 cRT1 +RT2 RT3 ]. (4.49)

Applying part (vii) of Proposition 4.6.10 to (4.49) we have

det[(E3B)T ] = det[RT1 cRT1 +RT2 RT3 ]

= det[RT1 RT2 RT3 ];

so that
det[(E3B)T ] = det(BT );

thus, by virtue of part (ii) of Proposition 4.6.10,

det(E3B) = det(B). (4.50)

In view of (4.43) and (4.50) we see that

det(E3B) = det(E3) det(B). (4.51)

Finally, note that (4.46), (4.48) and (4.51) are instances of (4.37) for the
three classes of elementary 3×3 matrices. We have therefore established Lemma
4.6.19.

Proposition 4.6.20. Let B be a 3×3 matrix and A an invertible 3×3 matrix.
Then

det(AB) = det(A) det(B). (4.52)

Proof: Let A and B denote 3 × 3 matrices and assume that A is invertible. It
then follows from Proposition 3.3.21 that

A = E1E2 · · ·Ek, (4.53)

for elementary 3× 3 matrices E1, E2 . . . , Ek.
Applying Lemma 4.6.19 to (4.54) successively we obtain

det(A) = det(E1) det(E2) · · · det(Ek). (4.54)

Next, write
AB = E1E2 · · ·EkB, (4.55)

and apply Lemma 4.6.19 to (4.55) successively we obtain

det(AB) = det(E1) det(E2) · · · det(Ek) det(B). (4.56)

Finally, combine (4.54) and (4.56) to obtain (4.52).
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We end this section with the proof of Proposition 4.6.16.

Proof of Proposition 4.6.16: Let A and B be 3× 3 matrices. Assume that A is
singular. It then follows from part (ix) of Proposition 4.6.10 that

det(A) = 0,

and from Proposition 4.6.18 that

det(AB) = 0.

Consequently,
det(AB) = det(A) det(B),

and (4.35) is established in this case.
On the other hand, if A is nonsingular, (4.35) follows from Proposition 4.6.20.

The proof of Proposition 4.6.16 is now complete.

4.6.7 Orientation in R3

It is not surprising that |det(R)| = 1 in the Example 4.6.15, since R is an
orthogonal transformation and therefore it preserves angles between vectors
and lengths. The fact that det(R) > 0 will then imply that R also preserves
orientation. Given an ordered basis B = {v1, v2, v3} of R3, we say that B has a
positive orientation if

〈v1, v2 × v3〉 > 0.

If 〈v1, v2 × v3〉 < 0, we say that B has a negative orientation. We say that a
transformation T : R3 → R3 preserves orientation if det(T ) > 0. If det(T ) < 0,
we say that T reverses orientation.

Example 4.6.21. Let T : R3 → R3 denote reflection on the xy–plane; that is,

T

 x
y
z

 =

 x
y
−z

 ,

or

T

 x
y
z

 =

 1 0 0
0 1 0
0 0 −1

 x
y
z

 .

Thus,

MT =

 1 0 0
0 1 0
0 0 −1


and, therefore, det(T ) = det(MT ) = −1 < 0. Hence, T reverses orientation.

In the next chapter we will prove that any orthogonal transformation from
R3 to R3 which preserves orientation must be a rotation. This will complete
the solution to the problem that we stated at the beginning of these notes.
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Chapter 5

The Eigenvalue Problem

We have seen in the previous chapter that a rotation in R3 can be modeled by
an orthogonal transformation from R3 to R3 which also preserves orientation.
It is not hard to see that compositions of orthogonal, orientation preserving
transformations are also orthogonal and orientation preserving. Thus, a partial
solution to the motivating problem stated at the start of these notes, and re–
stated as Problem 4.0.8 on page 91, will be attained if we can show that for any
orientation preserving, orthogonal transformation,

R : R3 → R3,

there exists a nonzero vector v ∈ R3 such that

R(v) = v;

that is, R fixes the line spanned by v. This would correspond to the axis of
rotation of the transformation.

Given a linear transformation, T : Rn → Rn, a scalar, λ, for which the
equation

T (v) = λv

has a nontrivial solution, v, is called an eigenvalue of the transformation T ,
and a nontrivial solution of T (v) = λv is called an eigenvector corresponding
to the eigenvalue λ. Thus, in order to solve Problem 4.0.8, we will have to show
that any orientation preserving, orthogonal transformation from R3 to R3 must
have the scalar 1 as an eigenvalue.

We begin our discussion of the eigenvalue problem by presenting the example
of characterizing all orthogonal, orientation reversing transformations in R2.

5.1 Orientation reversing, orthogonal transfor-
mations in R2

This section is a follow–up to Example 4.6.6. In that example, we proved that
any orientation preserving, orthogonal transformation in R2 must be a rota-

129
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tion. In what follows we will prove that any orientation reversing, orthogonal
transformation in R2 must be a reflection.

Assume that R : R2 → R2 is an orthogonal transformation with

det(R) = −1. (5.1)

Let MR =

(
a b
c d

)
denote the matrix representation for for R relative to the

standard basis in R2. Then, since R is orthogonal,

M−1R = MT
R , (5.2)

where

M−1R =
1

det(R)

(
d −b
−c a

)
=

(
−d b
c −a

)
, (5.3)

since det(R) = −1. We also note that

MT
R =

(
a c
b d

)
. (5.4)

It then follows from (5.2)–(5.4) that d = −a and b = c. We then have that the
matrix representation of R relative to the standard basis in R2 must be of the
form

MR =

(
a b
b −a

)
, (5.5)

where
a2 + b2 = 1. (5.6)

We claim that there exist nonzero vectors, v1 and v2, in R2 such that

MRv1 = v1

and
MRv2 = −v2

Definition 5.1.1 (Eigenvalues and Eigenvectors). Let T : Rn → Rn be a linear
transformation. A scalar, λ, is said to be an eigenvalue of T if and only if the
equation

T (v) = λv (5.7)

has a nontrivial solution.
A nontrivial solution, v, of the equation T (v) = λv is called an eigenvector

corresponding to the eigenvalue λ.
Observe that the equation in (5.7) can also be written as

(T − λI)v = 0, (5.8)

where I : Rn → Rn denotes the identity transformation in Rn. Thus, λ is an
eigenvalue of T if and only if the null space of the linear transformation T − λI
is nontrivial; that is NT−λI 6= {0}. The null space of T − λI is called the
eigenspace of T corresponding to λ and is denoted by ET (λ).
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Thus, according to Definition 5.1.1, we wish to prove that the linear function
R : R2 → R2, whose matrix representation, MR, is given by (5.5) has eigenvalues
λ1 = 1 and λ2 = −1. This will prove that R is a reflection on the line given by
ER(1). To see why this is the case, we will show that eigenspace corresponding
to λ2 = −1 is a line orthogonal to ER(1) which gets reflected across the line
ER(1) (see the picture in Figure 5.1.1).

x
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ER(1)
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Figure 5.1.1: Reflection in R2

In order to find eigenvalues of R, we look for values of λ for which the system

(MR − λI)v = 0 (5.9)

has nontrivial solutions, where MR is the matrix given in (5.5) and I is the
2 × 2 identity matrix. Now the system in (5.9) has nontrivial solutions when
the columns of the matrix

MR − λI =

(
a− λ b
b −a− λ

)
are linearly dependent, which occurs if and only if the determinant of MR − λI
is 0; that is, λ is an eigenvalue of R if and only if

(λ+ a)(λ− a)− b2 = 0

or
λ2 − 1 = 0,

since a2 + b2 = 1. We then get that λ1 = 1 and λ2 = −1 are eigenvalues of R,
which was to be shown.

In order to find the eigenspace corresponding to λ1 = 1, we solve the homo-
geneous system (

a− 1 b
b −a− 1

)(
x
y

)
=

(
0
0

)
(5.10)
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In order to solve (5.10), we first consider the case b = 0. Then, from a2 +b2 = 1,
we get that a2 = 1, so that a = 1 or a = −1. If a = 1, the system in (5.10) is
equivalent to the system (

0 0
0 −2

)(
x
y

)
=

(
0
0

)
,

which is equivalent to the equation y = 0. Thus, setting x = t, where t is
arbitrary we get that the solution space of (5.10) for the case b = 0 and a = 1
is given by (

x
y

)
= t

(
1
0

)
,

so that

ER(1) = span

{(
1
0

)}
,

or the x–axis. Thus, in this case R is reflection across the x–axis. Similarly, if
b = 0 and a = −1, we get from the system in (5.10) that

ER(1) = span

{(
0
1

)}
,

so that, in this case, R is reflection across the y–axis.
Next, assume that b 6= 0 and perform Gaussian elimination on the system

in (5.10) to the get the system(
1 −(a+ 1)/b
0 0

)(
x
y

)
=

(
0
0

)
, (5.11)

where we have used a2 + b2 = 1.
Observe that the system in (5.11) is equivalent to the equation

x− a+ 1

b
y = 0,

which has solutions space given by(
x
y

)
= t

(
a+ 1
b

)
,

where t is arbitrary. We therefore get that the eigenspace of R corresponding
to λ = 1 is

ER(1) = span

{(
a+ 1
b

)}
. (5.12)

Next, we solve the system in (5.9) for λ = −1, which is the same as(
a+ 1 b
b −a+ 1

)(
x
y

)
=

(
0
0

)
(5.13)
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A calculation similar to the one leading to (5.12) can be used to show that, for
the case b 6= 0, the eigenspace corresponding to λ = −1 is

ER(−1) = span

{(
a− 1
b

)}
. (5.14)

Thus, we have shown that

v1 =

(
a+ 1
b

)
is an eigenvector corresponding to λ1 = 1 and

v2 =

(
a− 1
b

)
is an eigenvector corresponding to λ2 = −1. That is,

R(v1) = v1

and
R(v2) = −v2.

Furthermore, v1 and v2 are orthogonal; to see why this is so, compute

〈v1, v2〉 = (a+ 1)(a− 1) + b2 = a2 − 1 + b2 = 0,

since a2+b2 = 1. Thus, R is indeed a reflection across the line ER(1). Note that
R fixes the line ER(1); that is, R(v) = v for all v ∈ ER(1); for, if v ∈ ER(1),
then

v = cv1,

for some scalar c, so that, by the linearity of R,

R(v) = R(cv1) = cR(v1) = cv1 = v.

Note that R does not fix ER(−1), given in (5.14). However, it maps ER(−1)
to itself; that is, R(v) ∈ ER(−1) for all v ∈ ER(−1). To see this, let v ∈ ER(−1);
then, v = cv2 for some scalar, c. Then,

R(v) = R(cv2) = cR(v2) = −cv2 ∈ span{v2} = ER(−1).

Definition 5.1.2 (Invariant Subspaces). Let T : Rn → Rn denote a linear trans-
formation. A subspace, W , of Rn is said to be invariant under T if and only
if

T (w) ∈W for all w ∈W ;

in other words, W is invariant under T iff

T (W ) ⊆W.

We have seen in this section that, if R : R2 → R2 is an orthogonal, orientation
reversing transformation, then R has invariant subspaces ER(1) and ER(−1).
The invariant subspace ER(1) is the line of reflection of R. The line ER(−1) is
orthogonal to ER(1) and is reflected across ER(1) by the transformation R.
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5.2 Orientation preserving, orthogonal transfor-
mations in R3

In this section we solve Problem 4.0.8 on page 91. We will first re-formulate the
problem in the language of linear transformation and the eigenvalue problem.

Theorem 5.2.1. Let R : R3 → R3 denote an orthogonal transformation which
preserves orientation. We claim that λ = 1 is an eigenvalue of R. Furthermore,
if u is a eigenvector corresponding to λ = 1 of norm 1, then R is a rotation
around the span of u.

Proof: We first prove that if R : R3 → R3 is orthogonal and preserves orienta-
tion, then λ = 1 is an eigenvalue of R. To show this, let MR denote the matrix
representation for R relative to the standard basis in R3 and assume that

MT
RMR = MRM

T
R = I, (5.15)

where I denotes the 3× 3 identity matrix, and

det(MR) = 1. (5.16)

We prove that the equation
MRv = v

has a nontrivial solution in R3, or equivalently, the homogenous system

(MR − I)v = 0 (5.17)

has nontrivial solutions. This occurs if and only if

det(MR − I) = 0. (5.18)

Observe that

det(MR − I) = det(MR −MRM
T
R )

= det(MR(I −MT
R ))

= det(MR) det((I −MT
R ))

= det((I −MT
R )),

where we have used (5.15), the distributive property of matrix multiplication,
Proposition 4.6.16 and (5.16). Thus, using the fact that, for any matrices A and
B of the same dimension, (A+B)T = AT +BT , we get that

det(MR − I) = det((I −MR)T )

= det(I −MR),
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by part (ii) of Proposition 4.6.10. It then follows that

det(MR − I) = det(−(MR − I))

= (−1)3 det(MR − I),

by Proposition 4.6.17. Consequently,

det(MR − I) = −det(MR − I),

from which (5.18) follows, and therefore the homogeneous system in (5.18) has
nontrivial solutions. Hence, λ = 1 is an eigenvalue of R.

Next, let u denote an eigenvector of R corresponding to the eigenvalue λ = 1;
assume also that ‖u‖ = 1. Define Pu : R3 → R3 by

Pu(v) = 〈u, v〉u for all v ∈ R3;

that is, Pu is orthogonal projection onto the direction of u. Then, the image of
Pu is the span of the vector u,

IPu = span{u};

so
dim(IPu) = 1. (5.19)

Let W denote the null space of Pu. We then have that

W = {w ∈ R3 | 〈u,w〉 = 0};

that is, W is the space of vectors in R3 which are orthogonal to u. By the
Dimension Theorem we then get, in view of (5.19), that

dim(W ) = 2.

Thus, W is a two–dimensional subspace in R3; in other words, W is a plane
through the origin in R3 which is perpendicular to u.

Since, W is two–dimensional, it has a basis, {w1, w2}, which we may assume
consists of unit vectors. We may further assume that w1 and w2 are orthogonal
to each other. To see why this is the case, let {v1, v2} denote any basis for W .
By multiplying by the reciprocal of their norms, if necessary, we may assume
that ‖v1‖ = ‖v2‖ = 1. Set w1 = v1 and find a scalar c such that v2 + cw1 is
orthogonal to w1; in other words,

〈v2 + cw1, w1〉 = 0,

which yields
c = −〈v2, w1〉.

Finally, set

w2 =
1

‖v2 − 〈v2, w1〉w1‖
(v2 − 〈v2, w1〉w1).
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Then, w2 is a unit vector which is orthogonal to w1.
We may also choose w1 and w2 so that

det([ w1 w2 u ]) = 1. (5.20)

To see why we can do this, observe that, since w1, w2 and u are mutually
orthogonal and have length 1,

volume(P (w1, w2, u)) = 1,

so that, by (4.33), |det([ w1 w2 u ])| = 1. We therefore have two possibilities
for det([ w1 w2 u ]): 1 or −1. If the determinant of [ w1 w2 u ] = −1, we
may switch the order of w1 and w2, and rename them w2 and w1, respectively
to get (5.20).

Next, we show that W is an invariant subspace of R; that is, we show that

R(W ) ⊆W,

or equivalently
R(w) ∈W for all w ∈W. (5.21)

To show (5.21), let w ∈W . Then, 〈u,w〉 = 0 and, using the fact that R(u) = u,

〈R(w), u〉 = 〈R(w), R(u)〉
= 〈w, u〉

since R is orthogonal. Consequently, 〈R(w), u〉 = 0, which shows that R(w) is
in W , and (5.21) is established. It then follows that

R(w1) = aw1 + cw2 (5.22)

and
R(w2) = bw1 + dw2, (5.23)

for some scalars a, b, c and d, since W = span{w1, w2}.

In what remains of this section we will show that the effect of R on W
is that of rotating it by some angle θ. To see why this is the case, set B =
{w1, w2, u}. We see by (5.20) that B is a basis for R3; this can also be seen from
the observation that B forms an orthonormal set of three vectors in R3. Thus,
any vector, v, in R3 can be expressed as

v = y1w1 + y2w2 + y3u, (5.24)

where y1, y1 and y3 are the coordinates of v relative to B. Thus,

[v]B =

 y1
y2
y3


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is the coordinates vector of v relative to B. Applying the linear transformation,
R, on v given in (5.24) we obtain

R(v) = y1R(w1) + y2R(w2) + y3R(u)
= y1(aw1 + cw2) + y2(bw1 + dw2) + y3u
= (ay1 + by2)w1 + (cy1 + dy2)w2 + y3u,

where we have used (5.22) and (5.23) and the fact that u is an eigenvector for
R corresponding to the eigenvalue λ = 1. We then have that the coordinates of
R(v) relative to B are given by

[R(v)]B =

 ay1 + by2
cy1 + dy2

y3

 ,

which may be written as

[R(v)]B =

 a b 0
c d 0
0 0 1

 y1
y2
y3

 ,

or

[R(v)]B =

 a b 0
c d 0
0 0 1

 [v]B. (5.25)

We claim that the entries a, b, c and d in the matrix in (5.25) satisfy the relations d = a
b = −c

a2 + c2 = 1.
(5.26)

These relations will imply that (5.25) may be further re-written as

[R(v)]B =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 [v]B. (5.27)

The expression in (5.27) shows that, when viewed from the frame of reference
provided by the basis B = {w1, w2, u}, R is a rotation around the axis deter-
mined by the eigenvector u through an angle of θ, where θ is determined by
sin θ = c and cos θ = a.

In order to prove the relations in (5.26) for the entries a, b, c and d in the
3× 3 matrix in (5.25), denote it by A; that is, let

A =

 a b 0
c d 0
0 0 1

 ,

where a, b, c and d are determined by (5.22) and (5.23). We claim that
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(i) A is orthogonal, and

(ii) det(A) = 1.

To see why (i) is true, compute

〈R(wi), R(wj)〉 = 〈wi, wj〉

=

{
1 if i = j

0 if i 6= j,

for i, j = 1, 2, where we have used the assumption that R is orthogonal and the
fact that w1 and w2 are mutually orthogonal with norm 1. On the other hand,
using (5.22) and (5.23), we obtain that

〈R(w1), R(w1)〉 = 〈aw1 + cw2, aw1 + cw2〉

= a2〈w1, w1〉+ ac〈w1, w2〉+ ca〈w2, w2〉+ c2〈w2, w2〉

= a2 + c2,

again by the orthonormality of the basis {w1, w2}. It then follows that

a2 + c2 = 1. (5.28)

Similar calculations show that

b2 + d2 = 1 (5.29)

and

ab+ cd = 0. (5.30)

The relations in (5.28), (5.29) and (5.30) imply that A is orthogonal; in fact,

ATA =

 a c 0
b d 0
0 0 1

 a b 0
c d 0
0 0 1



=

 a2 + c2 ab+ cd 0
ab+ cd b2 + d2 0

0 0 1



=

 1 0 0
0 1 0
0 0 1


= I.
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Next, to see that det(A) = 1, let Q denote the matrix [ w1 w2 u ]. Then,
by (5.20),

det(Q) = 1.

It then follows that Q is invertible and that

Q−1w1 = e1, Q−1w2 = e2 and Q−1u = e3,

since

Qe1 = w1, Qe2 = w2 and Qe3 = u.

Consider the matrix Q−1MRQ. Observe that the first column of this matrix
is

Q−1MRQe1 = Q−1MRw1

= Q−1R(w1)

= Q−1(aw1 + cw2)

= aQ−1w1 + cQ−1w2

= ae1 + ce2

=

 a
c
0

 .

Similarly, the second and third column of Q−1MRQ are

Q−1MRQe2

 b
d
0


and

Q−1MRQe3

 0
0
1

 ,

respectively. We then conclude that

Q−1MRQ =

 a b 0
c d 0
0 0 1

 = A.
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We then get that

det(A) = det(Q−1MRQ)

= det(Q−1) det(MR) det(Q)

=
1

det(Q)
det(R) det(Q)

= det(R)

= 1.

Observe that

det(A) = a

∣∣∣∣ d 0
0 1

∣∣∣∣− c ∣∣∣∣ b 0
0 1

∣∣∣∣ = ad− bc.

Consequently, ad− bc = 1. Observe that this implies that

A−1 =

 d −b 0
−c a 0
0 0 1

 .

On the other hand,

AT =

 a c 0
b d 0
0 0 1

 .

This, since A is orthogonal, A−1 = AT and, therefore, the relations in (5.26)
follow, which we wanted to prove.

Example 5.2.2. Let R : R3 → R3 by a linear transformation obtained by

composing a rotation around the x–axis by −π
2

and rotation around the y–

axis by −π
2

; that is,

R = Rx,−π2 ◦Ry,π2 ; (5.31)

The rotations Rx,−π2 and Ry,π2 are shown pictorially in Figure 5.2.2.
The matrix representation for Rx,−π2 can be obtained from Figure 5.2.2 to

be

MRx,−π
2

=

 1 0 0
0 0 1
0 −1 0

 , (5.32)

since Rx,−π2 maps e1, e2 and e3 to e1, −e3 and e2, respectively. Similarly,

MRy, π
2

=

 0 0 −1
0 1 0
1 0 0

 . (5.33)
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y

z

x

Ry,π2

Rx,−π2

e1

e2

e3

Figure 5.2.2: R = Rx,−π2 ◦Ry,π2 .

It follows from (5.31), (5.32) and (5.33) that the matrix representation for R
relative to the standard basis is

MR = MRx,−π
2
MRy, π

2

=

 1 0 0
0 0 1
0 −1 0

 0 0 −1
0 1 0
1 0 0



=

 0 0 −1
1 0 0
0 −1 0


(5.34)

Since MR is orthogonal (see Problem 1 in Assignment #22) and

det(MR) = det(MRx,−π
2

) det(MRy, π
2

) = 1,

it follows from Theorem 5.2.1 that λ = 1 is an eigenvalue of R. In order to find
an eigenvector for R corresponding to the eigenvalue λ = 1, we solve the system

(MR − I)v = 0, (5.35)

where I denotes the 3 × 3 identity matrix and MR is the matrix in (5.34). In
order to solve the equation in (5.35) we perform elementary row operations to
the augmented matrix −1 0 −1 | 0

1 −1 0 | 0
0 −1 −1 | 0


to obtain  1 0 1 | 0

0 1 1 | 0
0 0 0 | 0

 (5.36)
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It follows from the matrix in (5.36) that the equation in (5.35) is equivalent to
the system {

x1 + x3 = 0
x2 + x3 = 0,

which has solutions  x1 = t;
x2 = t;
x3 = −t,

for t ∈ R. It then follows that v =

 1
1
−1

 is an eigenvector for R corresponding

to the eigenvalue λ = 1. According to Theorem 5.2.1, the line span{v} is the axis
of rotation of the orthogonal transformation R. Next, we see how to determine
the angle of rotation around that axis.

Set

u =

 1/
√

3

1/
√

3

−1/
√

3

 , (5.37)

so that u is a unit vector in the direction of v and, therefore, u is also an
eigenvector for R corresponding to the eigenvalue λ = 1.

Let Γ denote the plane through the origin in R3 that is orthogonal to u; so
that

Γ = {w ∈ R3 | 〈u,w〉 = 0}, (5.38)

or

Γ =


xy
z

 ∈ R3
∣∣∣ x+ y − z = 0

 . (5.39)

Then, Γ is a 2–dimensional subspace of R3 that is invariant under the transfor-
mation R; that is,

R(Γ) ⊆ Γ. (5.40)

The assertion in (5.40) follows from the fact that R is orthogonal. Indeed, if
w ∈ Γ, it follows from (5.38) that

〈u,w〉 = 0, (5.41)

where u is given in (5.37). Now, since u is an eigenvector for R corresponding
to λ = 1, we have that

R(u) = u. (5.42)

It follows from (5.41), (5.42) and the fact that R is orthogonal that

〈u,R(w)〉 = 〈R(u), R(w)〉 = 〈u,w〉 = 0,

which shows that R(w) ∈ Γ. Thus, we have shown that

w ∈ Γ⇒ R(w) ∈ Γ,
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which establishes (5.40).
Next, we construct a set {w1, w2} of unit vectors in Γ that are also orthogonal

to each other. First, we find a vector v1 =

xy
z

 ∈ Γ with x = 1 and y = 0;

thus, in view of (5.39), z = 1; so that

v1 =

1
0
1

 . (5.43)

We then take

w1 =

1/
√

2
0

1/
√

2

 ; (5.44)

that is, w1 is a unit vector in the direction of v1 in (5.43).

Next, we look for a vector v2 =

xy
z

 ∈ Γ that is orthogonal to v1 in (5.43).

It then follows from (5.39) and (5.43) that{
x+ y − z = 0
x + z = 0.

(5.45)

The system in (5.45) can be solved by reducing the augmented matrix(
1 1 −1 | 0
1 0 1 | 0

)
(5.46)

to (
1 0 1 | 0
0 1 −2 | 0.

)
(5.47)

From the equivalence of the matrices in (5.46) and (5.47) it follows that the
system in (5.45) is equivalent to the system{

x + z = 0
y − 2z = 0.

(5.48)

Solving the system in (5.48) yields a solution

v2 =

 1
−2
−1

 . (5.49)

Thus, we can take

w2 =

 1/
√

6

−2/
√

6

−1/
√

6

 , (5.50)
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the unit vector in the direction of v2 in (5.49).

The vectors u, w1 and w2 in (5.37), (5.44) and (5.50), respectively, are
mutually orthogonal unit vectors in R3; hence, the set

B = {u,w1, w2} (5.51)

forms a basis for R3 (see Problem 3 in Assignment #12).

Set

Q = [u w1 w2]; (5.52)

that is, Q is the matrix whose columns are the vectors in the ordered basis B in
(5.51).

Computing the determinant of Q in (5.52) we obtain

det(Q) =
1

6

∣∣∣∣∣∣
1 1 1
1 0 −2
−1 1 −1

∣∣∣∣∣∣
=

1

6

[
−
∣∣∣∣ 1 1

1 −1

∣∣∣∣+ 2

∣∣∣∣ 1 1
−1 1

∣∣∣∣]

=
1

6
[−(−2) + 2(2)] ,

so that

det(Q) = 1 > 0,

and therefore the basis B in (5.51) has a positive orientation.

Next, we find the matrix representation of R relative to the ordered basis B
in (5.51).

We have already noted that R(u) = u, so that

R(u) = 1 · u+ 0 · w1 + 0 · w2,

and therefore, the coordinates of R(u) relative to B are

[R(u)]B =

1
0
0

 . (5.53)

Next, we compute the coordinates of R(w1) and R(w2) relative to B. First,
note that, by virtue of (5.40), we can write

R(w1) = aw1 + cw2 (5.54)

and

R(w2) = bw1 + dw2, (5.55)
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for some scalars a, b, c and d, where

R(w1) = MR w1

=

 0 0 −1
1 0 0
0 −1 0

1/
√

2
0

1/
√

2



=

−1/
√

2

1/
√

2
0

 ,

(5.56)

and
R(w2) = MR w2

=

 0 0 −1
1 0 0
0 −1 0

 1/
√

6

−2/
√

6

−1/
√

6



=

 1/
√

6

1/
√

6

2/
√

6

 .

(5.57)

Since w1 and w2 are unit vectors that are orthogonal to each other, we can use
the result of Problem 3 in Assignment #12 to compute the scalars a, b, c and d
in (5.54) and (5.55) to obtain

a = 〈R(w1), w1〉

= R(w1)Tw1

=

(
− 1√

2

1√
2

0

)1/
√

2
0

1/
√

2

 ,

so that

a = −1

2
, (5.58)

where we have used the result in (5.56). Similarly,

c = 〈R(w1), w2〉

= R(w1)Tw2

=

(
− 1√

2

1√
2

0

) 1/
√

6

−2/
√

6

−1/
√

6

 ,
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so that

c = −
√

3

2
, (5.59)

where we have also used the definition of w2 in (5.50). Putting (5.54), (5.58)
and (5.59) together we obtain the coordinates of R(w1) relative to B to be

[R(w1)]B =

 0
−1/2

−
√

3/2

 . (5.60)

Calculations similar to those leading to (5.60), using the results of (5.57)
and (5.55) can be used to obtain

[R(w2)]B =

 0√
3/2
−1/2

 . (5.61)

Combining (5.53), (5.60) and (5.61), we get that the matrix representation for
R relative to the basis B is

[R]B =

 1 0 0

0 −1/2
√

3/2

0 −
√

3/2 −1/2

 (5.62)

Thus, the matrix representation for R relative to B is of the form

[R]B =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (5.63)

where, comparing (5.62) and (5.63), we see that R corresponds to a rotation
around the line spanned by u through an angle θ such that

cos θ = −1

2
and sin θ = −

√
3

2
.

Thus, viewed from the frame of reference provided by the vectors u, w1 and w2

in B, R is a rotation around the axis generated by the unit vector u through

and angle θ = −2π

3
or −120◦.
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