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Chapter 1

Motivation for the course

Imagine a ball whose center is at a fixed location in three—dimensional space, but
is free to rotate about its center around any axis through the center. The center
of the ball is not allowed to move away from its fixed location. Imagine that
we perform several rotations about various axes, one after the other. We claim
that there are two antipodal points on the surface of the ball which are exactly
at the same locations they were at the beginning of the process. Furthermore,
the combination of all the rotations that we perform has the same affect on the
ball as that of a single rotation performed about the axis going through the
fixed antipodal points. This result is know in the literature as Euler’s Theorem

-

on the Axis of Rotation (see [PPR09]).

One of the goals of this course will be the proof if this fact. We will require
all of the machinery of Linear Algebra to prove this result. The machinery
of Linear Algebra consists of a new language we need to learn, new concepts
we need to master and several theorems that we need to understand. The
language and concepts of Linear Algebra will help us find convenient ways to
represent rotations in space. Rotations, we will see, are special kinds of linear
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transformations, which are functions that map points in space to points in space
and which satisfy some special properties.

We have studied functions in Calculus already. In Calculus I and II we dealt
with real valued functions defined on intervals of the real line, R; in Calculus III,
we learned about functions which may be defined in regions of the plane, R?,
or three dimensional space, R?, and which may be real valued or vector valued
(also known as vector fields). In Linear Algebra we focus on a class of functions
which are defined in all of the space (one—, two—, or three-dimensional space,
or higher dimensional space) and can take on values in a one—dimensional or
higher—-dimensional space. The functions we will deal with have the property
known as linearity. Loosely speaking, linearity means that the functions interact
nicely with the algebraic structure that the spaces on which the functions act
have: the structure of a linear space or a vector space.

The study of vector spaces will be one of the major topics of this course. We
begin our discussion of vector spaces by introducing the example of Euclidean
n—dimensional space. The main concepts of Linear Algebra will first be defined
in the context of Euclidean space and then will be presented in more general
context later on in the course.



Chapter 2

Euclidean n—dimensional
Space

2.1 Definition of n—Dimensional Euclidean Space

Euclidean space of dimension n, denoted by R™ in this course, will consist of
columns of real numbers of the form

€
)

Tn

These are called column vectors. In many textbooks elements of R™ are
denoted by row—vectors; in the lectures and homework assignments, we will use
column vectors to represents the elements in R™. Vectors in R™ can be used
to locate points in n—dimensional space. They can also be used to indicate
displacements in a certain direction and through certain distance.

Example 2.1.1. Consider two-dimensional space, R2. This can be represented
by the familiar xy—plane pictured in Figure 2.1.1.

The vectors (;) and (21> are represented in the figure as arrows, or

directed line segments, emanating from the origin of the xy—plane.

1 L
o ) can be used to locate a point in the
xy—plane with coordinates (1,2). However, it can also indicate a displacement
from the origin to the point (1,2) through the straight line segment joining

them.

In the previous example, the vector

Notation (Vector Notation and Conventions). In the lectures and in these notes
we will use the symbols u, v, w, etc. to denote vectors. In several linear algebra

7



8 CHAPTER 2. EUCLIDEAN N-DIMENSIONAL SPACE

Figure 2.1.1: Two—dimensional Euclidean Space

texts, though, these symbols are usually written in boldface, u, v, w, etc., or
with an arrow on top of the letter, 7, 7, E?, etc. In these notes, real numbers
will usually be denoted by the letters a, b, ¢, d,t, s, z,y, z, etc. and will be called
scalars in order to distinguish them from vectors. I will also try to follow my
own convention that if we are interested in locating a point in space, we will use
the row vector made up of the Cartesian coordinates of the point; for instance,
a point P in R™ will be indicated by P(x1,x2,...,%,), where x1,xa, ..., T, are
the coordinates of the point.

As mentioned earlier, vectors in R™ can also be used to indicate displacement
along a straight line segment. For instance, the point P(x1, za, ..., ;) is located
by the vector

1
T
v=o0b=|"]1,

Tn

where O denotes the origin, or zero vector, in n—dimensional Euclidean space.
The arrow over the symbols OP emphasizes the “displacement” nature of the
vector v.

Example 2.1.2. Denote the vectors (;) and 2) in Figure 2.1.1 by v

-1
and vy, respectively. Then, v; and vy locate the point P;(1,2) and Pa(2, —1),
respectively. See Figure 2.1.2. Note, however, that the arrow representing the
vector vo in Figure 2.1.2 does not have to be drawn with its starting point at
the origin. It can be drawn anywhere as long as its length and direction are
the same (see Figure 2.1.2). We will still call it the vector vy. Only when the
base of the arrow representing vy is located at the origin will it be locating the
point P(2,—1). In all other instances, the vector vy represents a displacement
parallel to that from the origin to the point (2, —1).
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(1,2)
Vg b2
U1
1 v
%'UQ } } .
(2,-1)

Figure 2.1.2: Dual Nature of Vectors in Euclidean Space

2.2 Algebraic Structure on Euclidean Space

What makes R™ into a vector space are the algebraic operations that we will
define in this section. We begin with vector addition.

1. Vector Addition

z Y1
. T2 Y2 .
Given v = . and w = .|, the vector sum v + w or v and w is

Tn Yn

1+

T2 + Y2

v+w = A
Tn + Yn

Example 2.2.1. Let v; = (;) and vy = (21) . Then, the vector sum

142 3
o= (2D ()

Figure 2.2.3 shows a geometric interpretation of the vector sum of the
vectors v; and vy in the previous example. It is known as the parallelogram
rule: the arrow representing the vector vy is drawn with its base at the
tip of the arrow representing the vector v;. The vector sum vy + vo is then
represented by the arrow going from the base of the arrow representing v
to the tip of the translated arrow representing vs.

of v; and vy is

Notice that we could have obtained the same vector sum, vy + vo, if|
instead of translating the arrow representing vo, we would have translated
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U2

Figure 2.2.3: Parallelogram Rule

the arrow representing vy to the tip of the arrow representing vo; see Figure
2.2.4

V2

Figure 2.2.4: Commutative Property for Vector Addition

The picture in Figure 2.2.4 illustrates the fact that

V1 + vy = vg + vq.

This is known as the commutative property of vector addition, which
can be derived algebraically from the definition and the fact that addition
Ty
T2
of real numbers is commutative: for any vectors v = . and w =
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(231
Y2
. in R,
Yn
Y1+ 21 T1+ Y1
Y2 + T2 To + Y2
w+v= . = . =v+w.

Properties of Vector Addition

Let u, v, w denote vectors in R™. Then,
(a) Commutativity of Vector Addition
vt+w=w-+v
(b) Associativity of Vector Addition
(u+v)+w=u+ (v+w)

Like commutativity, this property follows from the definition and the
fact that addition of real numbers is associative:

€ Y 21
. T2 Y2 22
Writev=1| . |, w=] . andu= | . |. Then,

Tn Yn Zn

z1 + 1 (1 (21 + 1) + 31

Z2 + x2 Y2 (22 + x2) + 92

(u+w)+v= : +1 .| = :
Zn + T Yn (zn + $n) + Yn

Thus, since (z; + ;) + y; = x; + (x; +y;), for each i = 1,2,...,n, by
associativity of addition of real numbers, it follows that

(21 +21) + 11 21+ (z1 + 1)
(22 +22) + o 22 + (22 + y2)
(u+w)+v= ) = ) =u+ (v4w).
(c) Existence of an Additive Identity
0
0
The vector 0 = | . | in R™ has the property that
0

v+0=0+v=v forall vinR".
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This follows from the fact that = + 0 = z for all real numbers z.

(d) Existence of an Additive Inverse

X1 —I1
T2 —Z2

Given v = | . in R™, the vector w defined by v = ) has
In —Tn

the property that
v+ w=0.

The vector w is called an additive inverse of v.

2. Scalar Multiplication

Z1
Z2
Given a real number ¢, also called a scalar, and a vector v = | . |, the

Ty
scaling of v by ¢, denoted by tv, is given by
t:l?l
t.’L‘Q
tv =

tr,

Example 2.2.2. Given the vector v; = in R?, the scalar products

1
2

1
(—2> v1 and %vl are given by

()= (1) mi=(3)

respectively. The arrows representing these vectors are shown in Figure
2.2.5. Observe that the arrows representing the scalar products of vy lie
on the same line as the arrow representing v .

Properties of Scalar Multiplication

(a) Associativity of Scalar Multiplication
Given scalars t and s and a vector v in R™,

t(sv) = (ts)v.

This property follows from the definition of scalar multiplication and
the fact that s(tz) = (st)z for all real numbers z; that is, associativity
of multiplication of real numbers.
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3
2 U1

Figure 2.2.5: Scalar Multiplication

(b) Identity in Scalar Multiplication
The scalar 1 has the property that

lv=wv forall veR"

3. Distributive Properties

Given vectors v and w in R™, and scalars ¢t and s,
(a) tlv+w) =tv+tw
(b) (t+ s)v =tv+ sv.

These properties follow from the distributive properties for addition and
multiplication in the set of real numbers; namely

tx+y)=te+ty forall t,z,y eR,

and
(t+ s)x =tx+sx forall t s,z €R,

respectively.

2.3 Linear Combinations and Spans

Given a vector v in R™, the set of all scalar multiples of v is called the span of
the set {v}. We denote the span of {v} by span({v}). In symbols, we write

span({v}) = {tv | t € R}.

Geometrically, if v is not the zero vector in R", span{v} is the line through the
origin on R™ in the direction of the vector v.
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1
Example 2.3.1 (In R3?). Let v = [ 2] . Then,
1
1
span{v} =<t |2 ’ teR
1
We can also write this set as
T T t
span{v} = y|lerR" |yl =|2t],teRr
z z t

Figure 2.3.6 shows a sketch of the line in R? representing span{v}.

z
v
€z Yy
span{v}
Figure 2.3.6: Line in R3
T
Note that | y | is a vector on the line, span{v}, if and only if
z
T t
yl =12t
z t
x
for some scalar t. In other words, |y is on the line if and only if the
z

coordinates x, y and z satisfy the equations
r =t
y = 2t
z = t.
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These are known as the parametric equations of the line and ¢ is called a
parameter.

Definition 2.3.2 (Linear Combinations). Given vectors vy, ve,...,v; in R,
the expression
C1V1 + CoU2 + - + Cp Uy,

where c1, ¢, ..., are scalars, is called a linear combination of the vectors
V1,V2,y...,Vk.

Definition 2.3.3 (Span). Given vectors vy, vs, ..., v, in R™, the collection of
all linear combinations of the vectors v, vs, ..., v is called the span of the set
of vectors {vy,va,...,vr}. We denote the span of {vy,vs,..., v} by

span{vy,va, ..., Vg }.
We then have that
span{vi, va, ..., vk} = {t1v1 + tova 4 -+ + tgvp | L1, to, ...t € R}

Example 2.3.4. Consider the vectors v; and v, in R? given by

1 1
vy=11 and v =10
1 2
Let’s compute span{vy, v2}.
Solution: Write
span{vy,va} = {c1v1 + cova | c1,c0 € R}
1 1
= c1 1) +c |0 ’ c1,C2 € R
1 2

C1 C2
ci|+1 O ‘ c1,c0 €R
c1 2¢o

1+ c2
= c1 ‘ c1,c0 €ER
Cl+262
x
Y
z
X

We then have that a vector is in span{vy, v} if and only if

c1+ co
C1
z c1 + 2¢o

<
Il



16 CHAPTER 2. EUCLIDEAN N-DIMENSIONAL SPACE

for some scalars ¢; and c¢o; that is, if

c1 + Co = x
C1 = Yy
c1+2c = =z

Substituting the second equation, ¢; = y, into the first and third equation leads
to the two equation
Y+ Co =
{ Yy+2c = z.
Solving for ¢y in the first equation and substituting into the second yields the
single equation

20 —y—2=0.
This is the equation of a plane through the origin in R3 and containing the
points with coordinates (1,1,1) and (1,0, 2). O
x
In the previous example we showed that if a vector [ y | is in the span,
z
1 1
W = span 11,10 ,
1 2
1 1
of the vectors v1 = | 1] and v, = | 0| in R3, then it determines a point
1 2

with coordinates (z,y, z) in R? lying in the plane with equation 2x —y — z = 0.
Denote the plane by Q; that is,

x
Q= y|l eR® | 20—y—2=0
z
Then, the previous example shows that W is a subset of ). We write

wcaQ,

meaning that every element in W is also an element in ). We will presently
show that @ is also a subset of W; that is, every point in the plane @ must also

1 1
be in the span of the vectors vy = | 1| and vy = | 0
1 2
Example 2.3.5. Let
1 1
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and
T

Q= y|leR3 | 20—y—2=0
z

Show that Q C W.

Solution: To show that @ is a subset of W, we need to show that every point

1 1
in the plane ) is a linear combination of the vectorsv; = | 1| andwvs = | 0
1 2
x
Thus, let | y | € Q. Then,
z

2 —y—2=0.
Solving for z in terms of z and y in the previous equation yields
z=2x—y.

Thus, z depends on both z and y, which can be thought of as parameters. We
therefore set © = ¢t and y = s, where ¢t and s are parameters. We then have

x
that, if [y | € @, then
z
r =t
y = s
z = 2t—s.
x
In vector notation, we then have that, if | y | € @, then
z
T t
Y = S
z 2t — s
t
= O+ s |,
2t —s

where we have used the definition of vector addition in R3. Thus, using now
the definition of scalar multiplication, we get that

T 1 0
Y = t10]+s 1],
z 2 -1
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T
which shows that, if | y | € Q, then
z
x 1 0 0
Yy | € span 0], 1 = span ¢ va, 1
z 2 -1 -1
T
In order to complete the proof that | y | € span{vy,v2}, we will need to show
z
0
that the vector 1 | is in the span of the vectors vy and vs; that is, we need
-1
to find scalars ¢; and ¢y such that
0
C1V] + CoVg = 1],
-1
or
c1 +c2 0
C1 = 1
c1 + 2¢o -1
This leads to the system of equations
c1+ Cco = 0
C1 =1
c1 + 262 = 71,
which has solution: ¢; =1, ¢ = —1. Thus,
0
1 = V1 — Vg.
-1
z
Consequently, if |y | € Q, then
z
x 0
Y| =civ2 +c2 1
z -1

for some scalars ¢; and co, by what we have seen in the first part of this proof.

0
Hence, since 1) = v — vy, it follows that
x
y | = crve + ca(vr — v2) = cov1 + (c2 — c1)ve,
z
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which is a linear combination of v; and vo. Hence,

T T
y| €eQ=[y| €span{vy,va} = W.
z z

We have therefore shown that Q C W. O

The previous two examples show that the span of v; and v, is the same set
as the plane in R? with equation 22—y —z = 0. In other words, the combination
of the statements

WCQ and QCW

is equalivalent to the statement

W= Q.

2.4 Linear Independence

0
In the previous example we showed that the vector vz = 1] isin the span
-1
of the set {v1,v2}, where

1
vy = |1 and v =1(0
2

When this happens (i.e., when one vector in the set is in the span of the other
vectors) we say that the set {vy,ve,v3} is linearly dependent. In general, we
have the following definition:

Definition 2.4.1 (Linear Dependence in R™). A set of vectors, S, in R™ is said
to be linearly dependent if at least one of the vectors in S is a finite linear
combination of other vectors in S.

Example 2.4.2. We have already seen that the set S = {v1,vq,vs3}, where

1 1 0
vu=1|1], wvo=|0],and w3= 1],
1 2 -1

is a linearly dependent subset of R? since
U3 = U1 — V2;

that is, v3 is in the span of the other vectors in S.
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Example 2.4.3. Let vy, v9,...,v; be any vectors in R™. Then, the set
S ={0,v1,v9,...,0t},
where 0 denotes the zero vector in R™, is linearly dependent since
0=0-v34+0-v2+---4+0-vg;
that is, 0 is in the span of the vectors vy, va, ..., vk.

If a subset, S, of R™ is not linear dependent, we say that it is linearly
independent.

Definition 2.4.4 (Linear Independence in R™). A set of vectors, S, in R™ is
said to be linearly independent if it is not linearly dependent; that is, no
vector in S can be expressed as a linear combination of other vectors in S.

The following proposition gives an alternate characterization of linear inde-
pendence for a finite subset of R™.

Proposition 2.4.5. The set S = {v1,v9,...,v;} of vectors in R™ is linearly
independent if and only if

01:0, CQZO, ey CkZO
is the only solution to the vector equation
c1v1 + covg + - -+ v = 0.

Remark 2.4.6. Note that it is not hard to see that ¢y = 0,c0 =0,...,¢c, =0
is a solution to the equation

c1v1 + coUg + -+ -+ cpvr = 0. (2.1)

The solution ¢; = 0,¢c5 = 0,..., ¢ = 0 is usually referred to as the trivial solu-
tion. Thus, linear independence is equivalent to the statement that the trivial
solution is the only solution to the equation in (2.1). Thus, linear dependence
of the set {v1,vs,..., v} is equivalent to the statement that the equation

c1v1 + covg + - -+ v =0
has solutions in addition to the trivial solution.

Remark 2.4.7. The statement of Proposition 2.4.5 is a bi—conditional; that
is, it is the combination of the two implications:

1. If the set S = {v1,va,..., v} is linearly independent, then
c1=0,c=0, ..., cx =0
is the only solution to the vector equation

c1v + cava + -+ + cpv = 0;
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2. Conversely, if
c1=0,co=0, ..., cx =0
is the only solution to the vector equation
c1v1 + covg + - - + v = 0,
then S = {vy1,vs,..., v} is linearly independent.

Thus, in order to prove Proposition 2.4.5, the two implications need to be es-
tablished.

We will now prove Proposition 2.4.5. This is the first formal proof that we
present in the course and will therefore be presented with lots of details in order
to illustrate how a mathematical argument is presented. Subsequent arguments
in these notes will not be as detailed as this one.

Proof of Proposition 2.4.5. We first prove that if the set S = {vy,va,..., v} is
linearly independent, then

c1=0,c=0, ..., ¢c,=0
is the only solution to the vector equation
c1v1 + covo + - - + v = 0.

Suppose therefore that S is linearly independent. This means that no vector in
S is in the span of the other vectors in S.
We wish to prove that the equation

c1v1 +covg + -+ v =0
has only the trivial solution
cg=0,co=0, ..., cg=0.

If this is not the case, then there exist scalars cq, co, ..., cg, such not all of them
are zero and

c1vy + cove + - + v = 0.
Suppose the non-zero scalar is ¢;, for some j in {1,2,...,k}, and write
c1v1 + Ccovg + - - + Cji—1Vj—1 + CjU; + Cj+1Vj5+41 + R = 0. (22)
We can solve for ¢;v; in equation (2.2) by adding on both sides the additive
inverses of the other vectors. Using the properties of vector addition we then

get that

C]"Uj = —C1U1 — C2V9 — + -+ — cj_lvj_l — Cj+11]j+1 — = — CgUg,
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which, using now the properties of scalar multiplication can now be re-—written
as

cjvj = (—er)vit(=c2)vat - +(=¢j-1)vj14+(=¢ 1) vjpi+ - F(—cr)or. (2.3)

Now, since ¢; # 0, 1/¢; exists. We can then multiply both sides of equation (2.3)
by 1/¢;, and using now the distributive properties and the associative property
for addition and scalar multiplication we obtain that

(=& AU (R _ TG I (R
(e (e () ()

Equation (2.4) displays v; as a linear combination of v1,...,v;_1,vj41,..., k.
However, this is impossible since we are assuming that S is linearly independent
and therefore no no vector in S is in the span of the other vectors in S. This
contradiction then implies that the equation

11 +covg 4 -+ v =0
has only the trivial solution
c1=0,¢c=0, ..., ¢, =0,

which we had set out to prove.
Next, we prove the converse statement: if

c1=0,¢c=0, ..., ct=0
is the only solution to the vector equation
c1v1 + covg + -+ - + cpvp = 0, (2.5)

then S = {v1,vs,..., v} is linearly independent.
Suppose that
€101 + Vg + -+ v =0

has only the trivial solution
C1 :O, CQZO7 ey Ck:O.

Arguing by contradiction again, assume that S is not linearly independent.
Then, one of the vectors in S, say vj, is in the span of the other vectors in S
that is, there exist scalars ci,¢2,...,¢j—1,¢j41,- .., ¢k such that

v = C101 —+ covg + -+ + Cji—1Vj—1 + Cj+1Vj5+41 + -+ CpUE. (26)
Adding the additive inverse to both sides of equation (2.6) we obtain that

C1U1 + CoV2 + -+ + Cj_1Vj—1 — Vj + Cj11Vjr1 + - + CpU = 0,
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which may be re—written as
C1V1 + CoU2 + -+ + Cj_1Vj—1 + (—1)1)j + Cjp1Vj41 + 0 F CRUE = 0. (27)

Since —1 # 0, equation (2.7) shows that there is a non-trivial solution to the
equation
c1v1 + V2 + -+ - + v = 0.

This contradicts the assumption that the only solution to the equation in (2.5)
is the trivial one. Therefore, it is not the case that .S is linearly dependent and
hence it must be linearly independent. O

Proposition 2.4.5 is very useful in determining whether a given set of vectors,
{v1,v2,...,v%}, in R™ is linearly independent or not. According to Proposition
2.4.5, all we have to do is to solve the equation

c1v1 +covg + - - v =0

and determine whether it has one solution or more than one solution. In the
first case (only the trivial solution) we can conclude by virtue of Proposition
2.4.5 that the set is linearly independent. In the second case (more than one
solution), the set is linearly dependent.

1 1 1
Example 2.4.8. Determine whether the set 11, (0], |2 is linearly
1 2 0

independent in R? or not.

Solution: Consider the equation

1 1 1 0
ci 1) +e |0 +ce3|2] =10 (28)
1 2 0 0
This equation leads to the system of linear equations
ci+co+ecg3 = 0
c1+ 2c3 =0 (2.9)
c1+ 202 = 0,

Solving for c3 in the first equation and substituting into the second equation
leads to the system of two equations

—C1 — 262 = 0
{ c1 + 202 = 0. (21())

Observe that the system of equations in (2.10) is really a single equation in two
unknowns
c1+ 2co = 0. (2.11)
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We can solve for ¢; in equation (2.11) and c3 in the first equation 1n (2.9) to

obtain that
c1 = —202

o — o (2.12)

which shows that the unknown scalars c¢; and c3 depend on co, which could
taken on arbitrarily any value. To stress the arbitrary nature of ¢y, let’s rename
it ¢, an arbitrary parameter. We then get from (2.12) that

cp = —2t
o = t (2.13)
C3 = t.

Since the parameter ¢ in (2.13) is arbitrary, we see that the system in (2.9) has

infinitely many solutions. In particular, the vector equation (2.21) has non—

trivial solutions. It then follows by virtue of Proposition 2.4.5 that the set
1 1 1

11, 10], |2 is linearly dependent. d
1 2 0
1 1 0
Example 2.4.9. Determine whether the set 11, 10], (0 is linearly
1 2 1

independent in R? or not.

Solution: Consider the equation

1 1 0 0
ci 1]+ |0 +c3|0)]=1(0]. (214)
1 2 1 0

This equation leads to the system of linear equations

c1 +c2 = 0
c1 + 2c¢3 = 0 (2.15)
c1+2co+c3 = 0,

Solving for ¢; and ¢z in the first two equations in (2.15) leads to

C1 =0
Cy = 0.

Substituting for these in the third equation in (2.15) then leads to
C3 = 0.

We have therefore shown that the vector equation in (2.14) has only the trivial

1 1
solution. Consequently, by virtue of Proposition 2.4.5 that the set 11,10
1 2

is linearly independent.

)

0
0
1
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Remark 2.4.10. In the previous two examples we have seen that the question
of whether a finite set of vectors in R™ is linearly independent or not leads to
the question of whether a system of equations, like those in (2.9) and (2.15), has
only the trivial solution or not. The systems in (2.9) and (2.15) are examples
of homogeneous systems. In general, a homogenous system of linear of m
equations in n unknowns is of the form

apxy + a2+ -+ a1y, = 0

a1 T + ATz + -+ a2y, = 0
(2.16)

Am1Z1 + Amal2 + -+ AmpZn, = 0,
where the z1, 2, ..., %, are the unknowns, and a;;, for ¢ =1,2,...,m and j =
1,2,...,n, are known coefficients. We will study systems more systematically

later in the course and we will see that what is illustrated in the previous two
examples is what happens in general: either the linear homogenous system has
only the trivial solution, or it has infinitely many solutions.

2.5 Subspaces of Euclidean Space

In this section we study some special subsets of Euclidean space, R™. These are
called subspaces and are defined as follows

Definition 2.5.1 (Subspaces of R™). A non—empty subset, W, of Euclidean
space, R™, is said to be a subspace of R" iff

(i) v,w € W implies that v +w € W; and
(ii) ¢ € R and v € W implies that tv € W.

If (i) and (ii) in Definition 2.5.1 hold, we say that the set W is closed under
the vector space operations in R™. For this reason, properties (i) and (ii) are
usually referred to as closure properties.

There are many examples of subspaces of R™; but there are also many ex-
amples of subsets of R"™ which are not subspaces. We shall begin by presenting
a few examples of subsets which are not subspaces.

Example 2.5.2 (Subsets which are not subspaces).

1. The empty set, denoted by the symbol @), is not a subspace of any Euclidean
space by definition.

2. Consider the subset, S, of R? given by the first quadrant in the zy-plane:

S:{G)eRg‘x>07y>0}
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. . 1
S is not a subspace since <1) €S, but

(1) =)

is not in S because —1 < 0. That is, S is not closed under scalar multi-
plication.

. Let S C R? this time be given by

s={() e w0}

In this case, S is closed under scalar multiplication, but it is not closed
under vector addition. To see why this is so, let (; € S. Then, zy > 0.

Then, for any scalar ¢, note that
(t2)(ty) = 2y > 0

since t? > 0 for any real number ¢. Thus, S is closed under scalar mul-
tiplication. However, S is not closed under vector addition; to see this,

consider the vectors
1 0
v = (O) and w= (1) .

Then, v and w are both in .S since

1.0=0-(=1)=0.

en- ()

is not in S since 1-(—1) = -1 < 0.

However,

Example 2.5.3 (Subsets which are subspaces).

1. Let W = {0}; that is, W consists solely of the additive identity, 0, in R"™.

W is a subspace of R™ because
0+0=0€eW,
so that W is closed under vector addition; and
t-0=0eW forallteR;

that is, W is closed under scalar multiplication.
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2. W =R", the entire Euclidean space, is also a subspace of R".

T
3. Let W = Y ax + by 4+ cz =0 ), where a, b and c are real numbers,
z
is a subspace of R3.

X1 To
Proof: Let v=|y1 | and w= | y2 | bein W. Then,
zZ1 zZ9
ary+by1 +czy = 0
axe +bys +czo = 0.

Adding both equations yields
a(zy + z2) + b(y1 +y2) + c(z1 + 22) =0,

where we have used the distributive property for real numbers. It then
follows that
X1 + i)
v+w=|y1+y | €W,
21+ 29
and so W is closed under vector addition in R3.

Next, multiply ax; + by; + cz1 = 0 on both sides by a scalar ¢t and apply
the distributive and associative properties for real numbers to get that

a(txy) + b(tyr) + c(tz1) =0,

which show that

and therefore W is also closed with respect to scalar multiplication.
Hence, W is closed with respect to the vector space operations in R3; that
is, W is a subspace of R™.
Let S = {v1,v9,...,vx} be a subset of R™ and put W = span(S). Then,
W is a subspace of R™.

O

Proposition 2.5.4. Given a non—empty subset, S, of R”, span(.9) is a subspace
of R"™.
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Proof: Since S # (), there is a vector v € S. Observe that v = 1- v is a linear
combination of a vector from S; therefore, v € span(S) and therefore span(.S)
is non—empty.

Next, we show that span(S) is closed under the vector space operations of
R™. Let v € span(.S); then, there exist vectors vq,va, ..., v, in S such that

UV = C1V] + CoV2 + -+ + CLUE
for some scalars ¢y, cs,...,ci. Thus, for any scalar ¢,
t(Cl’Ul + covg + -+ ckvk)

t(ervr) + t(cova) + - - - + t(cgvr)
(ter)vr + (tea)va + -+ - + (tek) vk,

tv

which shows that tv is a linear combination of elements in S; that is, tv €
span(S). Consequently, span(S) is closed under scalar multiplication.
To show that span(S) is closed under vector addition, let v and w be in

span(S). Then, there exist vectors vy, vg,...,vx and wy,ws, ..., Wy, in S such
that
V= C1V] + CoV3 + - - - + CLVE
and
w = diw + dowa + -+ + dip W,
for for some scalars cq,ca, ..., ¢, and dy,dso,...,d,,. Thus,

V4w =civ1 + cova + - - + Uk + diwi + dowa + - - + AW,

which is a linear combination of vectors in S. Therefore, v + w € span(S).
We have therefore that span(.S) is a non—empty subset of R™ which is closed
under the vector space operations in R™; that is, span(S) is a subspace of R™. [

Proposition 2.5.5. Given a non—empty subset, S, of R™, span(.S) is the small-
est subspace of R™ which contains .S; that is, is W is any subspace of R™ such
that S C W, then span(S) C W.

Proof: Let V denote the smallest subspace of R™ that contains S; that is,
(i) V is a subspace of R™;

(ii) S CV; and

(iii) for any subspace, W, of R™ such that S C W,V C W.

We show that
V = span(S).

By Proposition 2.5.4, span(S) is a subspace of R™. Observe also that

S C span(S),
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since v € S implies that v = 1-v € span(95). It then follows that
V C span(9), (2.17)

since V is the smallest subset of R™ which contains S. It remains to show then
that

span(S) C V.
Let v € span(S); then, there exist vectors vy, vs, ..., v in S such that
V= C1V] + CoV3 + -+ - + CrVk

for some scalars ¢y, co,...,c,. Now, since S CV, v, € Vforalli=1,2,... k.
It then follows from the closure of V' with respect to scalar multiplication that

cv; €V foralli—1,2,... k.
Applying the closure of V' with respect to vector addition we then get that
101 + covg + -+ epvp €V
that is v € V. We have then shown that
v € span(S) = v eV,

that is,
span(S) C V.
Combining this with (2.17), we conclude that span(S) = V; that is, span(S) is

the smallest subspace of R™ which contains S. O

Remark 2.5.6 (The Span of the Empty Set). In view of Proposition 2.5.5, it
makes sense to define

span(()) = {0}.
Indeed, {0} is the smallest subset of R™ and () C {0}.

2.6 Finitely Generated Subspaces

We have seen that for any subset, S, of R™, span(S) is a subspace of R™. If the
set S is finite, we will say that span(S) is a finitely generate subspace of R™.

Definition 2.6.1 (Finitely Generated Subspaces). A subspace, W, of R" is
said to be finitely generate iff W = span(S) for some finite subset S of R™.

Example 2.6.2. Since {0} = span(()), by definition, it follows that {0} is
finitely generated because ) is finite.
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Example 2.6.3. Let eq,e9,...,¢e, be vectors in R" given by
1 0 0
0 1 0
€1 = . , €2 = . y seey En =
0 0 1

We show that
R™ = span{eq,ea,...,e,}. (2.18)

This will prove that R™ is finitely generated. To see why (2.18) is true, first
observe that

span{ey,es, ..., e,} CR™ (2.19)
Ty
€2
Next, let | . denote any vector in R™. We then have that
T,
x1 T1 0 0
T 0 To 0
= + Lot
T 0 0 T
1 0 0
0 1 0
= 2| .|+t 2Tn
0 0 1
= mier+Tey + o+ Tpen,
Z1
T2
which shows that | . is in the span of {ej,eq, - ,e,}. Thus,
In

R"™ C span{eq,ea,...,e,}.

Combining this with (2.19) yields (2.18), which shows that R" is finitely gener-
ated.

We will eventually show that all subspaces of R™ are finitely generated.
Before we do so, however, we need to make a short incursion into the theory of
systems of liner equations.
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2.7 Connections with the Theory of Systems Lin-
ear Equations

We have seen that the questions of whether a given set of vectors in R™ is
linearly independent can be translated into question of whether a homogeneous
system of the form

a1171 + ajpxre + - +aypr, = 0
0

G211 + G22T2 + -+ - + A2pXy =
(2.20)

Am1T1 + Q22 + - + Appx, = 0,

has only the trivial solution or many solutions. In this section we study these
systems in more detail. In particular, we will see that in the case m < n, then
the system (2.20) has infinitely many solutions. This result will imply that any
set of n vectors in R™, where n > m, is linearly dependent. We will illustrate
this with an example in R2.

Example 2.7.1. Let v; = G) , Vg = (_?) and vy = G) . Show that the

set {v1,v9,v3} is linearly dependent.

Solution: Consider the equation
C1V1 + CoVg + C3v3 = 0, (221)

where 0 denotes the zero—vector in R? and ¢;, ¢ and cg are scalars. This vector
equation leads to the system of equations

(2.22)

cg+2c0+c3 = 0
2c1 —co+c3 = 0.

Solving for ¢y in the first equation and substituting into the second equation
leads to the system
{ c1 + 202 + C3 = 0 (2 23)

—502 — C3 = 0.

Observe that systems (2.22) and (2.23) have the same solutions since we simply
solved for one of the variables in one equation and substituted into the other.
Similarly, we can now solve for ¢, in the second equation in (2.23) and substitute
for it in the first equation of the same system to get

c1 + %Cg = 0
{ —562—63 = 0. (224)

We can then solve for ¢; and ¢z in system (2.24) to get

{Cl B _%33 (2.25)
5

Cy = —zC3.
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The variables ¢; and ¢y in system (2.24) are usually called the leading variables
of the system; thus, the process of going from (2.24) to (2.25) is usually referred
to as solving for the leading variables.

System (2.25) shows that the leading variables, ¢; and ¢y, depend on c3,
which is arbitrary. We may therefore define c3 = —5¢, where ¢ is an arbitrary
parameter to get the solutions

c1 = 3t
o = t (2.26)
C3 = —5t,

so that the solution spaces of system (2.22) is

3
W = span 2
-5

We therefore conclude that the vector equation (2.21) has non—trivial solutions
and therefore {v1,v2,v3} is linearly dependent. O

2.7.1 Elementary Row Operations

The process of going from system (2.22) to the system in (2.24) can also be
achieved by a procedure that uses elimination of variables instead of substitu-
tion. For instances, we can multiply the first equation in (2.22) by the scalar
—2, adding to the second equation and replacing the second equation by the
result leads to the system:

(2.27)

cp+2c+cg = 0
—bco — c3 = 0,

which is the same system that we got in (2.24). This procedure does not change
the solution space of the original system. In general, the solution space for the
pair of equations

a;1T1 + appra + -+ apmr, = 0 (2 28)
ap1T1 + agao + -+ AppTn = 0 '
is the same as that of the pair
ai1T1 + G2T2 + -+ - + ATy = 0 (2 29)
(cair + ak1)z1 + (caiz + ag2)w2 + -+ - + (cain + agn)Tn = 0, '
1
T2
where c is any scalar. To see why this is so, let | . be a solution of system
Ty

(2.29); thus, from the second equation in the system,

I
e

(cain + ag1)x1 + (cao + ag2)xa + - - - + (Cain + Agn)Zn
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It then follows, using the distributive properties, that
ca; Ty + ap1x1 + cainxs + ageTa + - + cainxy, + agpnty, = 0.

Thus, by the associative properties and the distributive property again,

clainTy + aigZa + -+ + Qin®p) + ap1T1 + ap2T2 + 0+ Appn = 0.
Mo
T2
Consequently, since | . also satisfies the first equation in (2.29), we get that
Ty
ak1®1 + ake®2 + -+ Akptn = 0,
T
T2
which is the second equation in (2.28). Hence, . is also a solution of
Tn
T
T2
system (2.28). A similar argument shows that if | . is also a solution of
T,

system (2.28), then it is also a solution of system (2.29).

Adding a scalar multiple of one equation to another equation and replacing
the second equation by the resulting equation is an example of an elementary
row operation. Other elementary row operations are: (1) multiply an equation
by a no—zero scalar and replace the equation by the result of the scalar multiple,
and (2) swap two equations. It is clear that the later operation does not change
the solution space of the system; in the former operation, since the scalar is
non-zero, the solution space does not change either. To see why this is the case,

X1
X2
note that if | . is a solution of

Ty
c(aiiry + apxe + - - + apmT,) =0,
then, since ¢ # 0, we see that
;121 + aipxe + -+ aipxy = 0.
We illustrate this by multiplying the second equation in (2.27) by —1/5 to get.

{Cl+202+63 =0

cz—|—%03 = 0, (2.30)
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The system in (2.30) is in what is known as row echelon form, in which the
leading variables ¢; and ¢, have 1 as coefficient.

We can perform a final row operation on the system in (2.30) by multiplying
the second equation in the system by the scalar —2 and adding to the first

equation to get
c1 + 363 = 0
{ co + éc;a, = 0. (2.31)
The system in (2.31) is said to be in reduced row echelon form. It can be
solved for the leading variables to yield the system in (2.25).

2.7.2 Gaussian Elimination

Observe that in going from system (2.22) to system (2.31) by performing ele-
mentary row operations in the equations, as outlined in the previous section,
the operations only affected the coefficients; the variables c¢1, ¢o and c3 acted as
place—holders. It makes sense, therefore, to consider the coefficients only in or-
der to optimize calculations. The coefficients in each equation in system (2.22)
can be represented as rows in an array of numbers shown in equation

1 2 1] 0
< 2 1 1] 0) . (2.32)
The two—dimensional array in (2.32) is known as the augmented matrix for
the system (2.22). The elementary operations can then be performed on the rows
of the augmented matrix in (2.32) (hence the name, elementary row operations).

If we denote the rows first and second row in the matrix in (2.32) by R; and
R5, respectively, we can denote and keep track of the row operations as follows:

1 2 1 0

—2R; + Ry — Ry in (2.33) indicates that we have multiplied the first row in
(2.32) by —2, added the scalar product to the second, and replaced the second
row by the result. The rest of the operations can be indicated as follows:

. 1 2 1 |0
and 5|
1 0 3/5 0

The matrix in (2.34) is in row echelon form, and that in (2.35) is in reduced row
echelon form.

The process of going from an augmented matrix for a system to any of its row
echelon forms by performing elementary row operations is known as Gaussian
Elimination or Gauss—Jordan reduction. We will present here two more
examples in the context of determining whether a given set of vectors is linearly
independent or not.
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Example 2.7.2. Determine whether the set of vectors {vy, v, v3} in R?, where

1 2 0
v = 0], wv= 5 and wv3=1[-4],
-1 1 3

is linearly independent or not.

Solution: Consider the equation

1 2 0 0
Cc1 0] +c 5| 4+c3| -4 = 0]. (236)
-1 1 3 0

This leads to the system

c1 + 2¢o = 0
562 — 463 = 0 (237)
—c1+c+3cg = 0.
Starting with the augmented matrix
1 2 0] 0
0 5 —4 | 0], (2.38)
-1 1 3 10

we perform the following elementary row operations on the matrix in (2.38):

1 2 0 | 0

0 5 -4 | 0],
R1+R34>R3 0 3 3 | 0

1 2 0 |0
(1/5)Ry — Ry 0 1 —4/5 | 0|,

0 3 3 | 0

1 2 0 \ 0

0 1 —4/5 | 0],
—3Ry+ Rs — Ry 0 0 27/5 | 0

and

1 2 0 | 0

0 1 —4/5 | 01,
(5/27)R3 — R3 0 0 1 | 0

where we have indicated the row operation by the row on which the operation
was performed. It then follows that the system in (2.37) is equivalent to the
system
c1 + 2¢o = 0
Cy — (4/5)03 = 0 (239)
C3 = 0.
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System (2.39) is in row echelon form and can be solved to yield
C3 = Cy = C1 = 0.

Consequently, the vector equation (2.36) has only the trivial solution, and there-
fore the set {v1,vq,v3} is linearly independent. d

Example 2.7.3. Determine whether the set of vectors {vy, v, v3} in R?, where

1 2 0
v = 0], wv= 5 and w3 = 51,
-1 1 3

is linearly independent or not.

Solution: Consider the equation

1 2 0 0
Cc1 0] +co 5] +c3 5] = 0 (240)
-1 1 3 0
This leads to the system
c1 -+ 2¢o = 0
5co + bes = 0 (2.41)
—C1+c2+ 303 = 0.
Starting with the augmented matrix
1 2 0] 0
0O 5 5 | 0], (2.42)
-1 1 3 1] 0

1 2 0] 0
(1/5)Rs — Ra 0 1 11 0],
Ri + Rs — R3 0 3 3 10
1 2 0] 0
0 1 11 0],
—3Ry + R3 — R3 0 0 0 ‘ 0
and
—2Ry+ Ry — R, 1 0 -2 | 0
0 1 110
0 0 0 ] O

We then conclude that the system (2.41) is equivalent to the system

c1 — 263 = 0
{ o tcs = 0 (2.43)
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which is in reduced row echelon form and can be solved for the leading variables
c1 and ¢y to yield

c1 = 2t
Cy = —t
C3 = t,

where t is an arbitrary parameter. It then follows that the system in (2.41)
has infinitely many solutions; consequently, the vector equation in (2.40) has
nontrivial solutions and therefore the set {v1,v2,v3} is linearly dependent. O

Examples 2.7.2 and 2.7.3 illustrate what can happen in general when we
are solving homogeneous linear systems: either (1) the system has only the
trivial solution; or (2) the system has infinitely many solutions. In the case
in which there are infinitely many solutions, the system is equivalent to one in
which there are more unknowns than equations, as was the case in system (2.43)
Example 2.7.3. In the following section we prove that this is always the case: a
homogenous systems with more unknowns than equations has infinitely many
solutions.

2.7.3 The Fundamental Theorem of Homogenous Systems
of Linear Equations

The fundamental theorem for homogenous linear systems states that a homoge-
nous system of more unknowns than equations has a nontrivial solutions. This
is Theorem 1.5E in our text [TT70, pg. 16]. We present here slight variation of
that theorem:

Theorem 2.7.4 (Fundamental Theorem of Homogeneous Linear Systems). A
homogeneous system of m linear equations in n unknowns,

a1171 + ajpxre + - +apr, = 0

a21T1 + a22%2 + - +azr, = 0
(2.44)

Am1T1 + Q22 + -+ + Appx, = 0,

with n > m has infinitely many solutions.

Proof: Perform Gauss—Jordan reduction of the augmented matrix of the system
in (2.44) to obtain the equivalent augmented matrix

1 bz big -+ big bipgr - bin | O
0 1 bag -+ bog bagr1 -+ bapy | O
Do : : : : : N
00 0 0 1 bupps - bew | O

in row—echelon form, where k < m. The previous system can be further reduced
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to , ,
1 0 0 - 0 gy o b, |0

/
o 1 0 -- 0 bypyq oo by, | O
N : : : / : : I: |
o o0 0 -- L bgqr 0 U |0

which leads to the system
o1+ B Thir + V) ppTs e 0, = 0
22 + bopt1Zp41 + o0+ bz, = 0
. (2.45)

T+ b;c,k:+1xk+1 st b;v,nxn = 0,

where k& < m, equivalent to (2.44). We can solve for the leading variables,
X1,%2, ..., T in (2.45) in terms of zx1q,. .., 2T, which can be set to equal arbi-
trary parameters. Since n > m and k < m, there are n—k > 1 such parameters,
It follows that system (2.45) has infinitely many solutions. Consequently, (2.44)
has infinitely many solutions. O

A consequence of the Fundamental Theorem 2.7.4 is the following Proposi-
tion which will play a crucial role in the study of subspaces of R™ in the next
section.

Proposition 2.7.5. Any set of vectors {vy,va, ..., v} in R™ with k > n must
be linearly dependent.

Proof: Consider the vector equation

101 + oo + - -+ + cpug, = 0. (2.46)
Since the set {vy,ve,...,vx} is a subset of R™, we can write
a1 a12 a1k
a21 a22 a2k
_ a _ a _ a
v = 31|, wy = 2, o, oy = 3k
an1 an2 Ank

Hence, the vector equation in (2.46) translate into the homogeneous system

aji1c1 +apca+ - +agey = 0
as1¢1 + agace + -+ aggcy = 0

(2.47)
ap1C1 + ap2na + -+ + apgcy = 0,

of n linear equations in k¥ unknowns. Since k > n, the homogenous system in
(2.47) has more unknowns than equations. It then follows from the Fundamental
Theorem 2.7.4 that system (2.47) has infinitely many solutions. It then follows
that the vector equation in (2.46) has a nontrivial solution, and therefore, by
Proposition 2.4.5, the set {v1,vs,...,v;} is linearly dependent. O
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Example 2.7.6. By Proposition 2.7.5, the set

1 0 1\ /-1
S = i) 2], 5], 5
1 1 1 4

is a linearly dependent subset of R®. We will now show how to find a subset of
S which is linearly independent and which also spans span(5).

Solution: Denote the elements of S by vy, ve, v3 and vy, respectively, and
consider the vector equation

C1V1 + C2v2 + C3U3 + cqvq4 = 0. (248)

Since S is a linearly dependent, equation (2.48) has nontrivial solutions. Our
goal now is to find those nontrivial solutions to obtain nontrivial linear relations
between the elements of S which will allow us to express some of the vectors
as linear combinations of the other ones. Those vectors in S which can be
expressed as linear combinations of the others can be discarded. We perform
this procedure until we find a linearly independent subset of S which which also
spans span(5).
Equation (2.48) leads to the system

c1+c3—cy = 0
c1+2c0+5c3+5c4 = 0 (249)
—c1+ca+c3+4ey = 0,
which has the augmented matrix
Ry 1 0 1 -1 1] 0
R, 1 2 5 5 10
R; -1 1 1 4 | 0

Performing the elementary row operations —R; + Ry — Ry and Ry + R3 — R3,
we obtain the augmented matrix:

1 0 1 -1 ] 0
0 2 4 6 | 0
0 1 2 3|0

Next, perform %Rg — Ry and —Rs + R3 — R3 in succession to obtain

1 0 1 -1 10
0 1 2 3|0
0 0 0 0] 0

Hence, the system in (2.57) is equivalent to the system

{ at+c—a =0 (2.50)

co+2c3+3c4, = 0.
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Solving for the leading variables ¢; and co in (2.50) then yields the solutions

ci = t+s

co = 2t—3s

s = —t (2.51)
Cq = s,

where t and s are arbitrary parameters.
Taking ¢t =1 and s = 0 in (2.51) yields the nontrivial linear relation

7)1+2’UQ*U3:0,

by virtue of the vector equation (2.48), which shows that vs = v1 + 2v9 and
therefore
v3 € span{vy, va}. (2.52)

Similarly, taking ¢ = 0 and s = 1 in (2.51) yields the nontrivial linear relation
v, — 3vg +v4 =0,
from which we get that v4 = —v; + 3vs, and therefore
vg € span{vy, va}. (2.53)
It follows from (2.52) and (2.53) that
{v1,v2,v3,v4} C spanf{vy, va}.

Consequently, since span{vi, vy, v3,v4} is the smallest subspace of R? which
contains {vy,vq, v3,v4}, by Proposition 2.5.5,

span{vy, ve, v3,v4} C span{vy, va}.
Combining this with
span{vy, ve} C spanf{vy, va, vs, v4},

we obtain that
span{vy,ve} = span(95).

It remains to check that {vy, v} is linearly independent. However, this follows
from the fact that v; and vy are not scalar multiples of each other. O

2.7.4 Nonhomogeneous Systems

Asking whether a vector v € R™ is in the span of the set {v1,va,..., v} in R®
leads to the system of n linear equations in k& unknowns

aic + aiaca + - Facy, = by

a1y + agacy + - - +aspcr, = by
(2.54)

ap1C1 + Ap2Ce + - -+ ankcy = by,
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where
a1 ai2 a1k
a21 a22 a2k
_ a _ a: _ a
v = 31 , Vg = 32 , cee UV = 3k ,
an1 an2 Ank
and
by
ba
v = b3
bn

If v is not the zero—vector in R™, then the system in (2.54) is a nonhomoge-
neous. In general, nonhomogeneous system might or might not have solutions.
If they do have a solution, they either have exactly one solution or infinitely
many solutions.

We can analyze the system in (2.54) by considering the augmented matrix

a11 a1z - A1k | b1
a1 a22 azk | ba

| (2.55)
an1 an2 Ank | bn

and performing elementary row operations on the rows of the matrix in (2.55).

1
Example 2.7.7. Determine whether or not the vector 2 |, is in the span
-3
of the set
1 0 1 -1
S = 11,1 21,1 51, 5
-1 1 1 4

Solution: Denote the elements of S by vy, ve, v3 and vy, respectively, and
consider the vector equation

€101 + CoUg + €3v3 + c4v4 = v, (2.56)
where
1
V= 2
-3
Equation (2.56) leads to the system
c1+c3—cy = 1
c1+2c0+5c3+5c, = 2 (257)

—c1+co+c3+4ey = -3,



42 CHAPTER 2. EUCLIDEAN N-DIMENSIONAL SPACE

which has the augmented matrix

Ry 1 0 1 -1 | 1
Ry 1 2 5 5 | 2
Ry -1 1 1 4 | -3

Performing the elementary row operations —R; + Ry — Ry and Ry + R3 — Rs,
we obtain the augmented matrix:

1 0 1 -1 | 1
0 2 4 6 | 1
0 1 2 3 | -2

Next, perform %Rg — Ry and — Ry + R3 — R3 in succession to obtain

1 0 1 -1 | 1
0o 1 2 3| 1/2
0O 0 0 0 | —5b/2
The third row in the previous matrix yields 0 = —5/2, which is impossible.
1
Therefore, the vector equation in (2.56) is not solvable. Hence, 2] is not
-3
in the span of the set S. 0

2.8 Maximal Linearly Independent Subsets

The goal of this section is to prove that every subspace, W, of R™ is the span
of a linearly independent subset, S. In other words,

Theorem 2.8.1. Let W be a subspace of R"™. There exists a subset, S, of W
such that

(i) S is linearly independent, and
(i1) W = span(S).

In the proof of Theorem 2.8.1 we will use Proposition 2.7.5, which says that
any set of vectors {vy,va,..., v} in R™ with & > n must be linearly dependent,
and the following

Lemma 2.8.2. Let S = {v1,va,...,v;} be a linearly independent subset of R™.
If v & span(S), then the set

SuU{v}={v,ve,...,v5,0v}
1s linearly independent.

Remark 2.8.3. The set S U {v} is called the union of the sets S and {v}.
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Proof of Lemma 2.8.2: Suppose that S is linearly independent and that v ¢
span(.S). Consider the vector equation

101 + CcoUg + - -+ + cpvp +cv = 0. (2.58)

We first show that ¢ = 0. For, if ¢ # 0, then we can solve for v in the vector
equation (2.58) to get

v = (—C—cl) v + <7%2> vy + o+ (*%) Uk (2.59)

where we have used the additive inverse, additive identity, associative and dis-
tributive properties of the vector space operations in R"™. Equation (2.59) dis-
plays v as a linear combination of the vectors in S; that is, v is an element of
the span of S. However, this contradicts the assumption that v ¢ span(S). It
then follows that ¢ = 0, and therefore, using (2.58),

C1V1 + covg + -+ + v, = 0. (2.60)

It then follows from (2.60) and the linear independence of S that

01162:"':Ck:0.
Hence, ¢; = ¢o = -+ = ¢ = ¢ = 0 is the only solution of (2.58) and, therefore,
S U {v} is linearly independent by Proposition 2.4.5. O

We are now in a position to prove Theorem 2.8.1.

Proof of Theorem 2.8.1: Let W be a subspace of R". If W = {0}, then
W = span(0);

therefore, S = ) in this case, and the proof is done.

On the other hand, if W # {0}, there exists v; in W such that v; # 0.
Thus, {v;} is linearly independent. If W = span{v;}, set S = {v;} and the
proof is done. Otherwise, there exists vy in W such that vy & span{v;}. Then,
by Lemma 2.8.2, the set {vy, vy} is linearly independent.

We may now proceed by induction to obtain a linearly independent sub-
set S = {v1,ve,...,vx} of W as follows: having found a linearly indepen-
dent subset {vy,vs,...,v5—1} of W such that span{vy,va,...,vk_1} # W, pick
vr € W such that vy & span{vy,va,...,vx—1}. Then, by Lemma 2.8.2, the set
{v1,v2,..., V51,0 } is linearly independent.

We claim that this process has to stop for some value of k£ < n. The reason
for this is that, by Proposition 2.7.5, if & > n, then S is linearly dependent.
Furthermore, S = {vy,vs,..., v} has the property that, every vector, v, in W,
the set S U {v} is linearly dependent. We therefore obtain a subset, S, of W
with the properties

(i) S is linearly independent, and
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(ii) for every v € W, the set S U {v} is linearly dependent.

We claim that S must span W. To see why this is so, first observe that, since
S C W, and W is a subspace of R", we get that

span(S) C W, (2.61)

since span(S) is the smallest subspace of R” which contains the set S. Thus, it
remains to show that
W C span(S). (2.62)

If (2.62) does not hold true, then there exists v € W such that v ¢ span(S). It
then follows by Lemma 2.8.2 that the set S U {v} is linearly independent, but
this contradicts (ii) above. Consequently, every v in W must in span(S) and
(2.62) follows.

Combining (2.61) and (2.62) yields

span(S) = W,

which is (ii) in the statement of Theorem 2.8.1. Since S was constructed to be
linearly independent, we also get that (i) in Theorem 2.8.1 also holds and we
have therefore completed the proof of Theorem 2.8.1. O

Remark 2.8.4. The subset S of W which we constructed in the proof of The-
orem 2.8.1 has the properties that: (i) S is linearly independent, and (ii) for
every vector v € W, the set S U {v} is linearly dependent. A set with these
two properties is called a maximal linearly independent subset subset of
W. Thus, we have proved that every subspace of R™ has a maximal linearly
independent subset.

2.9 Bases

A maximal linearly independent subset for a subspace, W, of R™ is also called
a basis for W.

Definition 2.9.1 (Basis of a Subspace). Let W be a subspace of R™. A subset
B of W is said to be a basis for W if and only if

(i) B is linearly independent, and
(ii) W = span(B).

Example 2.9.2. Let W = R"™ and B consist of the vectors eq, e, ..., e, in R™
given by

1 0 0

0 1 0

€1 = . , €2 = y ey En =
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We show that B is a basis for R™; in other words B is linearly independent and
it spans R".

We first show that B is linearly independent.

Consider the vector equation

cie1 + coes + -+ cpen, =0, (2.63)
1 0 0 0
0 1 0 0
C1 + c2 . +-- 4y = )
0 0 1 0
which leads to
C1 0
Co 0
Cn, 0
from which we get that
cp=cp=...=c¢,=0

is the only solution of the vector equation in (2.63). Hence, B is linearly inde-
pendent.
Next, we show that R™ = span(B). To see why this is so, observe that for

T
T2
any vector, .|, inR™,
Tp
1 x1 0 0
X9 0 X9 0
Ty 0 0 Tn
1 0 0
0 1 0
= x1|.|Fz2| .|+ F2an
0 0 1
= T1e1 +Te2 + -+ Tpep,
T
T2
which shows that | . is in the span of {ej,eq, -+ ,e,}. Thus,
:1771,

R"™ C span(B).
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On the other hand, since B C R", we get that
span(B) C R".

Thus,
R"™ = span(B).

Definition 2.9.3 (Standard Basis for R™). The set {e1,ea,- - ,e,}, denoted
by &,, is called the standard basis for R™.

T

Example 2.9.4. Let W = y| €R® | 242y —2=0p. We have seen that
z

W is a subspace of R®. Find a basis for W.

Solution: W is the solution space of the homogeneous linear equation
r+2y—2z=0.

Solving for x in tees of y and z, and setting these to be arbitrary parameters
—t and s, respectively, we get the solutions

r = 2t+s
y = —t
z = s,

from which we get that

2 1
W = eR? y|=t[-1]+s| O
z z (0 1
1
o]},
[

< 8
8

In other words,

—_

W = span —
0

Thus, the set

2 1
B={|-1|.,] o
0 1

is a candidate for a basis for W. To show that B is a basis, it remains to show
that it is linearly independent. So, consider the vector equation

2 1 0
C1 -1 + co 0 = 0 s
0 1 0
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which is equivalent to the system

201 — Cy = 0
—C1 = 0
C2 = 0,

from which we read that ¢; = co = 0 is the only solution. Consequently, B is
linearly independent.
We therefore conclude that B is a basis for W. (|

2.10 Dimension

A remarkable fact about bases for a subspace, W, of R™ is that any two bases
of W must have the same number of vectors. For example, in Example 2.9.4 we
saw that

2 1
B = -1],1 0
0 1
x
is a basis for the plane in R® given by W = y|eR3 | 24+2y—2=0
z
We did this by solving the equation
r+2y—2=0

for x in terms of y and z and setting the last two variables to be arbitrary
parameters. However, we could have instead solved for z in terms of x and .
This would have yielded the basis

1 0
B, = o, 1
1 2

Another basis for W is provided by the set

1 1
Bo={|-1],| 1
—1 3

Notice that, in all three cases, the bases consist of two vectors; i.e., the three
bases for W displayed above have the same number of elements. The goal of
this section is to prove that this result holds true in general:

Theorem 2.10.1 (Invariance of number of elements in bases). Let W be a
subspace of R™. If B; and B, are two bases of W, then B; and By have the
same number of elements.

Theorem 2.10.1 is the basis for the following definition:
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Definition 2.10.2 (Definition of Dimension). Let W be a subspace of R”. The
dimension of W, denoted dim (W), is the number of elements in a basis of W.

Example 2.10.3.

o If W =R", then dim(W) = n since the standard basis, &,, for R” has n
vectors (see Example 2.9.2 on page 44 in these notes).

e If W = {0}, then dim(W) = 0 since {0} = span((}) and () has no vectors.

z
o If W = y| €R® | 24+2y—2=03, then dim(W) = 2, since
z
2 1
B={|-1],[ o
0 1

is a basis for W.

Remark 2.10.4. Note that for any subspace W of R”, dim(W) < n. This last
statement follows from Theorem 2.8.1 and Proposition 2.7.5.

In order to prove the Invariance Theorem 2.10.1, we will need the following
lemma, which can be thought of as an extension of Proposition 2.7.5:

Lemma 2.10.5. Let W be a subspace of R™ with a basis B = {wy,wa, ..., wg}.
Any set of vectors {vi,va,...,um} in W, with m > k, must be linearly depen-
dent.

Proof: Consider the vector equation

101 + a9 + -+ - + CmUm, = 0. (2.64)
Since the set B = {wi,ws,...,w;} is a basis for W, we can write each v;
) ’ ) 9 VRl
j=1,2,...,m, as liner combination of the vectors in B:
v = a11wW1 +anwz + -+ ap1Wg,
V2 = Q12w + GoWw2 + -+ + ApaWg,
V3 = Q13w1 + G3W2 + -+ + ap3W,
Um = QW1+ G2nWz + - + GpmWk-

Substituting for v;, j =1,...,m, in the vector equation in (2.64) and applying
the distributive and associative properties yields the vector equation

(@111 + @122 + - - + Aimem) w1
+(agic1 + agaca + -+ G2mCm)we
+(ag1c1 + agaco + - - + agmem)wi = 0.

(2.65)
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Next, since the set B = {wy,wa, ..., wy} is linearly independent, it follows from
(2.65) that
aicr +apc2 + -+ amcm = 0
a1y + ac2 + -+ azmcm = 0
(2.66)
ag1C1 + agang + - + agmem = 0,

which is a homogeneous system of of k£ linear equations in m unknowns. Since
m > k, the homogenous system in (2.66) has more unknowns than equations.
It then follows from the Fundamental Theorem 2.7.4 that system (2.66) has
infinitely many solutions. Consequently, the vector equation in (2.64) has a
nontrivial solution, and therefore, by Proposition 2.4.5, the set {v1,va,..., v}
is linearly dependent. O

Proof of the Invariance Theorem 2.10.1. Let B; and Bs be two bases for the
subspace, W, of R™. Let k denote the number of vectors in B; and m the
number of vectors in Bs. We show that

k=m. (2.67)

If m > k, it follows from Lemma 2.10.5 the B; is linearly dependent; but this
impossible since By is a basis for W and is, therefore, linearly independent.
Thus,

m < k. (2.68)

The same argument applied to By and Bs interchanged implies that

k< m. (2.69)
Equation (2.67) follows by combining (2.68) and (2.69), and the Theorem is
proved. O

2.11 Coordinates

Another remarkable fact about bases for subspaces of R" is the following

Theorem 2.11.1 (Coordinates Theorem). Let W be a subspace of R™ and
B ={w,wa,...,wi}

be a basis for W. Given any vector, v, in W, there exists a unique set of scalars
C1,Co,...,C, Such that

v = Cciwy + CoWa + - - - + CWE.
Proof: Since B spans W, there exist scalars ¢, ca, ..., cg such that

V= Cwi + CoWsg + - -+ + cpwy. (2.70)
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It remains to show that ¢y, ca, ..., cx are the only scalars for which (2.70) works.
Suppose that there is another set of scalars dy,ds, ..., d; such that
v =djwy + daws + - - - + drpwy. (2.71)

Combining (2.70) and (2.71), we then obtain that
ciwy + cowsy + -+ cpwy = diwy + dowsy + - - -+ dpwy,. (2.72)

Adding (—dj)wy + (—d2)wz + - -+ + (—d)wy on both sides of equation (2.72)
and applying the associative and distributive properties we obtain that

(Cl — dl)wl + (CQ — dg)wg + -4 (Ck — dk)wk =0. (273)

It then follows from (2.73) and the linear independence of the basis B =
{wy,wa, ..., w,} that

01—d1202—d2:---:Ck—dk:0,
from which we get
d1 = (1, dQZCQ, ey dk:ck.
This proves the uniqueness of the coefficients c1, cs, ..., ¢, for the expansion of
v given in (2.70) in terms of the vectors in the basis B. O

Definition 2.11.2 (Ordered Basis). Let W be a subspace of R" of dimension
k and let B denote a basis for W. If the elements in B are listed in a specified
order: B = {wy,ws,...,w}, then B is called an ordered basis. In this sense,
the basis By = {wsg, wy, ..., wy} is different from B even though, as sets, B and
B are the same; that is, the contain the same elements. However, as ordered
bases, B and B; are not the same.

Definition 2.11.3 (Coordinates Relative to a Basis). Let W be a subspace of
R™ and
B ={w,wa,...,w;}

be an ordered basis for W. Given any vector, v, in W, the coordinates of v
relative to the basis B, are the unique set of scalars ¢y, ca, ..., ci such that

V= cCirwy + Cwa + -+ + CrWy.

We denote the coordinates of v relative to the basis B by the symbol [v]p and
C1
C2

write [v]g = | . |. The vector [v]p in R* is also called the coordinates

Ck
vector for v with respect to the basis B.
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T
Example 2.11.4. Let W = y| eR® | 2+2y—2=0p. We have seen
z
that the set
2 1
B = -1, 0
0 1
1
is a basis for W. Observe that the vector v = 1 is in W. To find the
3

coordinates of v relative to B, we need to solve the vector equation

1 1
ci | —-1] +ec 0] = 1
1 3
for ¢; and c3. We see that ¢; = —1 and ¢ = 3, so that

Observe that the coordinate vector [v]p is a vector in R? since W is a two—
dimensional subspace of R3.

2.12 Euclidean Inner Product and Norm

The reason R"” is called Euclidean space is that, in addition to the vector space
structure that we have discussed so far, there is also defined on R™ a product
between vectors in R™ which produces a scalar. We shall denote the new prod-
uct by the symbol (v,w) for vectors v and w in R”. We will call (v,w) the
Euclidean inner product of v and w, or simply, the inner product of v and
w.

2.12.1 Definition of Euclidean Inner Product

Before we give a formal definition of the inner product, let us show how we can
multiply a row—vector and a column—vector.

Definition 2.12.1 (Row—Column Product). Given a row-vector, R, of dimen-
sion n and a column—vector, C, also of the same dimension n, we define the
product RC' as follows:
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Y1
. Y2
Write R=[z1 x2 -+ x,] and C=| . |; then,
yn
Y1
Y2
RC=[v1 w2 - @) .| =Tyt T2y2 + A Tnln.
Yn
T
T
Definition 2.12.2 (Transpose of a vector). Given a vector v = | . in R™,
Tn
the transpose of v, denoted by v”, is the row vector
’I)T:(l‘l To - J?n)
T Y1
. ) T2 Y2 .
Definition 2.12.3. Given wvectors v = . and w = .|, the inner
:I"7l y?’l

product of v and w is the real number (or scalar), denoted by (v,w), obtained
as follows

Y2
(v, w) = vTw = (ml To - 5Cn) S| =t @y £ Znn
Yn

The inner product defined above satisfies the following properties:
Given vectors v, w, v, v2, wy and wy in R™,

(i) Symmetry: (v, w) = (w, v);

(ii) Bi-Linearity: {civ1 + cava, w) = ¢1{v1, w) + co(ve, w), for scalars ¢; and ca,
and (v, dywy + dows) = dy (v, w1) + d2{v, ws), for scalars dy and da; and

(iii) Positive Definiteness: (v,v) > 0 for all v € R™ and (v,v) = 0 if and only if
v is the zero vector.

These properties follow from the definition can be easily checked; for in-
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T Y1
e . Z2 Y2
stance, to verify (i), write v = | | and w= | . |. Then,

Ln Yn
1
€2

(woo) =[y1 y2 - wl| . | =21+ g2+ + Ynn.

Tp

Thus, since multiplication of real numbers is commutative,
(w,v) = T1Y1 + T2y2 + -+ + TuYn = (v, W),

which shows the symmetry of the Euclidean inner product.
To verify the second part of the bi-linearity property, write

X1 Y1 Z1

X2 Y2 z22
v = . , W1 = . , and wp =

‘T?’L yn Zn

Then, for scalars d; and ds,

diyr + dazy
d1y2 +d222
(v,dywy + dowy) = [z1 22 -+ T, .

dl Yn + d2 Zn

= x1(diyr +do21) + 22(drye + d222) + - + T (diyn + d22p).
Next, use the distributive and associative properties to get

(v,diwr + dows) = di(Tiyizoys + -+ TpYn) + do(z121 + T222 + -+ Tp2p)

= di{v,w1) + do{v, wa).

Finally, the positive—definiteness property of the Euclidean inner product
Ty
T
follows from the observation that, if v =] . |, then

Ln
(v,0) =} + a5+ Fap

is a sum of non—negative terms; and this sum is zero if and only if all the terms
are zero.

Given an inner product in a vector space, we can define a norm as follows.



54 CHAPTER 2. EUCLIDEAN N-DIMENSIONAL SPACE

Definition 2.12.4 (Euclidean Norm in R™). For any vector v € R™, its Eu-
clidean norm, denoted ||v||, is defined by

[l = v/ (v, v).

Observe that, by the positive definiteness of the inner product, this definition
makes sense. Note also that we have defined the norm of a vector to be the
positive square root of the the inner product of the vector with itself. Thus, the
norm of any vector is always non—negative.

If P is a point in R™ with coordinates (1, %2, . .., 2y ), the norm of the vector

O? that goes from the origin to P is the distance from P to the origin; that is,

dist(0, P) = |OP|| = \/22 + a3 + --- + a2.

If Py(x1,22,...,2,) and Po(y1,¥y2,-..,yn) are any two points in R”, then the
distance from P; to P, is given by

, S
dist(Py, P2) = |OP, — OPs|| = \/(y1 — 21)% + (y2 — 2)> + -+ + (yn — @)

2.12.2 Euclidean Norm

As a consequence of the properties of the inner product, we obtain the following
properties of the norm:

Proposition 2.12.5 (Properties of the Norm). Let v denote a vector in R™
and ¢ a scalar. Then,

(i) ||vll = 0 and ||v]| = 0 if and only if v is the zero vector.
(i) llevll = lefllv]]-
We also have the following very important inequality

Theorem 2.12.6 (The Cauchy—Schwarz Inequality). Let v and w denote vec-
tors in R™; then,
(v, w)| < [[olflw]-

Proof. Consider the function f: R — R given by
f(t) = |lv+tw|® forall tecR.
Using the definition of the norm, we can write
f(t) = (v +tw,v + tw).

We can now use the properties of the inner product to expand this expression
and get
F@&) = [[olf* + 2t{v, w) + £*Jw]*.



2.12. EUCLIDEAN INNER PRODUCT AND NORM 55

Thus, f(t) is a quadratic polynomial in ¢ which is always non—negative. There-
fore, it can have at most one real root. It then follows that

(2(v, w))? — 4l|w|*[lv]* <0,

from which we get
((v,w0))? < [lw]*[|v]|*.

Taking square roots on both sides yields the inequality. O

The Cauchy—Schwarz inequality, together with the properties of the inner
product and the definition of the norm, yields the following inequality known
as the Triangle Inequality.

Proposition 2.12.7 (The Triangle Inequality). For any v and w in R",
l[w +wl| < [Jo]| + [lw].

Proof. This is an Exercise.
O

Definition 2.12.8 (Unit vectors). A vector v € R”™ is said to be a unit vector
if |lul| = 1.

Remark 2.12.9 (Normalization). Given a non-—zero vector v in R", we can
define a unit vector in the direction of v as follows:

[[o]
Then,

1 1 1
lull = |[7=rv|| = [7=| Il = = [lvll = 1.
o]l o]l o]

1 .
We call WU the normalization of v and usually denotes it by v.
v

2.12.3 Orthogonality

Definition 2.12.10 (Orthogonality). Two vectors v and w in R™ are said to
be orthogonal, or perpendicular, if

(v,wy = 0.

Example 2.12.11. Let v € R™ and define W = {w € R" | (w,v) = 0}; that is,
W is the set of all vectors in R™ which are orthogonal to v.

(a) Prove that W is a subspace of R™.

Solution: First, observe that W # () because (0,v) = 0 and therefore
0 € W and so W is nonempty.
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Next, we show that W is closed under addition and scalar multiplication.

To see that W is closed under scalar multiplication, observe that, by the
bi-linearity property of the inner product, if w € W, then

(v, tw) = t{v,w) =t-0=0

for all t € R.

To show that W is closed under vector addition, let w; and ws be two
vectors in W. Then, applying the bi-linearity property of the inner product
again,

(w1 + wa,v) = (wy,v) + (wa,v) =0+ 0=0;

hence, wy + wy € W. O

Suppose that v # 0 and compute dim(W).

Solution: Let B = {wy,wa,...wg} be a basis for W. Then, dim(W) = k
and we would like to determine what k is.

First note that v ¢ span(B). For, suppose that v € span(B) = W, then
(v,v) = 0.

Thus, by the positive definiteness of the Euclidean inner product, it follows
that v = 0, but we are assuming that v # 0. Consequently, the set

BU{v} = {wy,wy,...wg,v}

is linearly independent. We claim that B U {v} also spans R™. To see why
this is so, let u € R™ be any vector in R™, and let

(u,v)

t=-t
[0

Write
u=tv+ (u—tv),

and observe that u — tv € W. To see why this is so, compute
(u—tv,v) = (u,v) —t{v,v)

= (u,v) —t|lv]?

_ uv—<u’v>v2
= () = ol

(u,v) = (u,v)

= 0.
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Thus, u —tv € W. It then follows that there exist scalars ¢, co, ..., ¢ such
that
u—tv = crwy + cowo + - - - + cpwy.

Thus,
U = ciwy + cowsg + - -+ 4+ crwig + to,

which shows that u € span(B U {v}). Consequently, B U {v} spans R™.
Therefore, since B U {v} is also linearly independent, it forms a basis for
R™. We then have that BU{v} must have n vectors in it, since dim(R") = n;
that is,

k+1=n,

from which we get that
dim(W) =n—1.
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Chapter 3

Spaces of Matrices

Matrices are rectangular arrays of numbers. More precisely, an m X n matrix is
an array of numbers made up of n columns, with each column consisting of m
scalar entries:

ai1 a2 -+ Qln
a21 G2 -+ G2pn (3 1)
Am1 Am2 e Amn

The columns of the matrix in (3.1) are the vectors

a1 ai2 A1n
a21 a2 A2n
_ a _ a _ a
Ul —_— 31 s 'UQ frd 32 s e s U” g 3n
am1 am?2 Amn

in R™.

We have already encountered matrices in this course, in connection with
systems of linear equations, when we discussed elementary row operations in the
augmented matrix corresponding to a system. We will see later in this course
that the connection between linear systems and matrices is a very important in
the theory of linear equations.

We will denote by M(m,n) the collection of all m x n matrices with real
entries. We will see that M(m,n) has the structure of a vector space with
addition and scalar multiplication defined in a manner analogous to those for
vectors in Euclidean space. In addition to the vector space structure, there is a
way to define a matrix product between a matrix in M(m,n) and a matrix in
M(n, k), in that order, to yield a matrix in M(m, k). This gives rise to a matrix
algebra in the space of square matrices (i.e., matrices in M(n,n)), which we
will also discuss in this chapter.

99
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3.1 Vector Space Structure in M(m,n)

Given matrices

a1 ai2 Q1n
a21 agz a2n

A=
am1 am2 °°  Qmn

and

b11 bio - bip
ba1 by -0 bop

B =
bml bm2 tee bmn

in M(m,n), we will use the shorthand notation
A = [a], 1<i<m, 1<j<my

and
B=b], 1<i<m,1<j<n

We define the vector sum of A and B, denoted by A + B, by
A+ B = [ai; + bijl, 1<i<m, 1 <j<n

that is, we add corresponding components to obtain the matrix sum of A and
B.

Example 3.1.1. Let A and B be the 2 x 3 matrices given by
4 0 7 7T —4 0
A<_7 4 0> and B( 4 _7 _4>.

A+B(11 -4 7).

Then,

-3 -3 —4

Note that if A, B € M(m,n), then A+ B € M(m,n).
Similarly, we can define the scalar product of a scalar, ¢, with a matrix
A = [a;;] in M(m, n) by

cA = [ca;j), 1<i<m, 1<7<n.

Example 3.1.2. Let A and B be as in Example 3.1.1. Then,

8 0 14 —21 12 0
24 = (-14 8 o) and (=3)8 = (—12 21 12) '
We can therefore form the linear combination

-13 12 14>

2A+(3)B<—26 20 12
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Definition 3.1.3 (Equality of Matrices). We say that two matrices are equal iff
corresponding entries are the same. In symbols, write A = [a;;] and B = [b;;];
we say that A = B iff

aij = by, forl<i<m and 1<j5<n.

The operations of matrix addition and scalar multiplication can be shown
to satisfy the following properties:

1. Properties of Matrix Addition

Let A, B and C denote matrices in M(m,n). Then,

(i) Commutativity of Matrix Addition
A+B=B+A
(ii) Associativity of Matrix Addition
(A+B)+C=A+(B+0C)

(iii) Existence of an Additive Identity
The matrix O = [0;;] € M(m,n) given by 0; ; =0, for all 1 <i<m
and 1 < j < n, has the property that

A+O0=0+A=A forall Ain M(m,n).

(iv) Existence of an Additive Inverse
Given A = [a;;] in M(m, n), the matrix W = [w;;] € M(m, n) defined
by w;; = —ai; for 1 <7 < m and 1 < j < n has the property that

A+W =W+ A=0.
The matrix W is called an additive inverse of A and is denoted by
—A.
2. Properties of Scalar Multiplication

(i) Associativity of Scalar Multiplication
Given scalars t and s and a matrix A in M(m,n),

t(sA) = (ts)A.

(ii) Identity in Scalar Multiplication
The scalar 1 has the property that

1-A=A forall AeM(m,n).
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3. Distributive Properties

Given matrices A and B in M(m,n), and scalars ¢ and s,

(i) {(A+ B) =tA+tB
(i) (t+s)A =tA+ sA.
All these properties can be easily verified using the definitions. For instance,
to establish the distributive property (i) t(A + B) = tA + tA, write A = [a;;]
and B = [b;], for 1 < ¢ < m and 1 < j < n; then,
tA+B) = [t(aij + bij)]
= [tai; + tbij]
= [tai;] + [tb;]
= tA+1tB.

The properties of matrix addition and scalar multiplication are analogous to
those for vector addition and scalar multiplication in Euclidean space, and they
make M(m, n) into a vector space or linear space. Thus, we can talk about spans
of sets of matrices and whether a given set of matrices is linearly independent
or not.

Example 3.1.4. Consider the 2 x 2 matrices

G a) (o) (1) = 6 3)

Denote them by Ay, Ay, A4 and Ay, respectively.
We first show that the set {4, A, A3, A4} spans M(2,2). To see why this
b
d )

is the case, note that for any matrix 2 x 2 matrix,
a b a 0 0 b 0 0 0 0
(c d> = <0 0>+<0 0)+<c 0)*(0 d)
_ . 1 0 b 0 1 L 0 0 +d 0 0
- 0 0 0 0 1 0 0o 1)’

(a Z) € span{Ay, As, Az, Ay}

c

so that

It then follows that
M(2,2) = span{A4;, Ao, As, A4}.

Next, we see that {A;, A, A3, A4} is linearly independent.
Consider the matrix equation

S N N RS B
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6102_00
cs cu) \O 0)°

cp=cy=c3=cy4 =0.

or

which implies that

Hence, the matrix equation in (3.2) has only the trivial solution. Consequently,
the set {A1, A, A3, A4} is linearly independent.
We therefore have that {A;, As, A3, A4} is a basis for M(2,2). Consequently,

dim(M(2,2)) = 4. Furthermore, the coordinate vector of the matrix (Z Z)
relative to the basis B = {A;, Ag, A3, A4} is

| —
R
o
QL
~__
— 1
s
Il
Qo o9

3.2 Matrix Algebra

There is a way to define the product of a matrix A € M(m,n) and a matrix
B € M(n, k) to obtain an m x k matrix AB. In this section we show how to
obtain that product and derive its properties.

3.2.1 The row—column product

We begin with the row—column product, which we have already defined in con-
nection with the Euclidean inner product in Section 2.12.1. Given R € M(1,n)
and C' € M(n, 1), the product RC' is the scalar obtained as follows:

1
. Y2
Write R=1[z1 x2 --- x,] and C=| . |; then,
Yn
Y1
Y2
RC = [-751 ZTo v mn} : =T1Yy1 + Ta2y2 + -+ TpYn,
Yn

or
RC = Z (Ejyj.
Jj=1

We also saw in Section 2.12.1 that the row—column product satisfies the dis-
tributive properties:
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(i) (R1 + R2)C = R1C + RyC for Ry, Ry € M(1,n) and C € M(n, 1);
(ii) R(Cl + Cg) = RC; + RCy for R e M(l,n) and C1,C5 € M(n, 1).

3.2.2 The product of a matrix and a vector

We will now see how to use the row—column product to define the product of a

T
T2
matrix A € M(m,n) and a (column) vector, z € R™, given by z =
T
Write
Ry
Ry
A= . y
Ry,
where
Ry = (a1 a1z -+ ain),
Ry = (6121 Qg2 - a2n) )
Rm = (aml m2 - amn) .
Then, the product Az is given by
R1ZC
RQI‘
Azr = . ,
R,.x

where, for each 1 < i < m, R;x is the row—column product

n
RiIZ E QijTj.
J=1

Thus, the product, Az, of an m x n matrix, A, and a (column) vector, z, in
M(n,1) = R™ is a (column) vector in M(m,1) = R™.

1
Example 3.2.1. Let A = -0 1 and x = | =3 | . Then,
2 —1 0 9

1
-1 0 1 1
= (T 5 o)1)= (8):
2
Note that in this example A € M(2,3), z € M(3,1) = R® and Az € M(2,1) =
R2.



3.2. MATRIX ALGEBRA 65

3.2.3 Interpretations of the matrix product Ax

Observe that, using the definition of the matrix product Az, the system of linear
equations

1121 + a12xe + -+ agr, = by
2121 + A22%2 + -+ -+ agkT, = by
(3.3)
Am1T1 + Ama®2 + -+ GkTn = b,
may be written in matrix form
ai1 a2 a1n 1 b1
a1 Q22 a2n To b
= 3
am1 am?2 Amn Tn bm
or
Az =b, (3.4)
x by
xIo b2
where A = [a;;] € M(m,n), z = € R" and b = € R™. We
Ty bm

therefore see that there exists a very close connection between matrix algebra
and the theory of systems of linear equations. In particular, the system in (3.3)
is solvable if and only if the matrix equation in (3.4) has a solution z € R™ for
the given vector b € R™.

Another interpretation of the matrix product Az is provided by the following
observation: Note that the product

a1121 + a12%2 4+« -+ + A1 Tp

a21T1 + Q22T2 + - -+ + G2p Ty
ACL’ = . 9

Am1T1 + AGm2Z2 + -+ + AmnTn

may be re—written as

1121 1272 A1nTn
211 A22X2 2Ty
Az = . + . +---+

Am1T1 Am2T2 AmnTn
a1 a12 G1n
a1 a22 Qa2n

= I + X2 +o 2

Am1 Am2 Amn

= Z1V1 + X2V2 + +++ + TpUp,
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where we have set

ail ai2 A1n
a21 a22 a2n

U1 = . , V2 = . y T, Un = . 9
Am1 am?2 Amn

the columns of the matrix A. Hence, Az is a linear combination of the columns,

V1,02, ...,Un, of the matrix A where the coefficients are the coordinates of x
relative to the standard basis € = {ej,eq,...,e,} in R™. We may therefore
write
T
T2
Az = [v1 v2 -+ vy
Tn

= T1U1 + ToU2 + -+ TpUn.
These observations can be used to derive the following facts about the matrix

equation in (3.4).

Proposition 3.2.2 (Connections between matrix algebra and the theory of
linear equations). Write the mxn matrixz A in terms of its columns vy, v, ..., Uy
in R™; that is,

A=vy v2 -+ vyl

1. Given b € R™, the matriz equation

Ax =1
has a solution if and only if b € span{vi,ve,...,v,}; that is, the matriz
equation in (3.4) is solvable if and only if b is in the span of the columns
of A.
2. The homogenous equation
Ax =0

has only the trivial solution if and only if the columns of A (namely,
V1,02, ...,U,) are linearly independent.

8. If the columns of A are linearly independent and span R™, then n = m;
that is, A must be a square matriz.

3.2.4 The Matrix Product
Given matrices A € M(m,n) and B € M(n, k), write B it terms of its columns,

B=[v; vy -+ vy,
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where v1,va, ..., v are (column) vectors in R™. We define the product AB by
AB = Afvy wve - ] =[Avy Avy oo Auvgl,
where, for each j € {1,2,...,k},
Ryv;

RQUj
Avj = .

9
Rm’l)j

where Ry, Ry, ..., R, are the rows of the matrix A. We therefore have that

Ry
Ry

AB = v v e ]
Ry,
Rivi Rive -+ Ryvg
RQ’Ul RQUQ e RQUk
Rypvi Rnpvs -+ Rpuk

Thus, if A € M(m,n) and B € M(n, k), the product AB is the m x k matrix
given by

where Ry, Ra, ..., Ry, are the rows of A and vy, vs, ..., v are the columns of B.
-1 0 1 2 -l
Example 3.2.3. Let A = and B= | —1 2| . Then,
2 -1 0 0 1

2 -1
-1 0 1 -2 2
AB = < > e = ( ) |
2 -1 0 0 1 4 —4
Thus, A € M(2,3), B € M(3,2) and AB € M(2,2).
Observe that we can also compute BA to obtain the 3 x 3 matrix:

2 -1 —4 1 2
BA=|[-1 2 (‘% _? é) =1 5 -2 -1
0 1 2 -1 0
Thus, in this example, AB # BA.

The previous example shows that matrix multiplication is not commutative.
Even when AB and BA have the same dimensions (e.g., when A and B are
square matrices of the same dimension), there is no guarantee that AB and BA
will be equal to each other.
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1 -2

o )= ).

Example 3.2.4. Let A = (_; é) and B = ( 0 _1) . Then,

and

Hence, AB # BA.

3.2.5 Properties of Matrix Multiplication

We have already seen that matrix multiplication, when it is defined, is not
commutative. It is, however, associative and it distributes with respect to matrix
addition, as we will show in this section.

Proposition 3.2.5 (Distributive Properties).

(i) For A € M(m,n) and B,C € M(n, k),
A(B+C)=AB+ AC.
(i) For A, B € M(m,n) and C € M(n, k),
(A+ B)C = AC + BC.
Proof of (i): Write
Ry
Ry
A= : , B=[v1 v2 -+ wg),andC=[w; wy -+ wgl,
Ron
where Ry, Ry, ..., R, € M(1,n) are the rows of A, vy,vs,...,v, € R™ are the

columns of B, and wy,ws,...,w; € R™ are the columns of C. Then, using the
distributive property for the row—column product,

AB+C) = [Ri(v;+wy)], 1<i<m, 1<j<k,
= [Rv;+Rw;] 1<i<m, 1<j<k,
= [Riv]+ [Riw;] 1<i<m, 1<) <k,
= AB+ AC,

which was to be shown. O
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Given a matrix A = [a;;] € M(m,n) and a matrix B = [bj¢] € M(n, k),
where 1 <i<m, 1< j<nand 1</ <k, we have seen that
AB=[Rw] 1<i<m, 1<(<k,

where Ry, R, ..., R,, are the rows of A and vy, v, ..., v are the columns of B.
Note that, for each i in {1,2,...,m} and each ¢ in {1,2,...,k},

Ri=(an a2 - am),
and
bie
bas
Uy = . )
Any
so that

We can therefore write
AB = [d;],

where
n
dig = E aijbje
i=1

forl <t <mand1l < ¥ <k We will use this short—hand notation for the
matrix product in the proof of the associative property below.

Proposition 3.2.6 (Associative Property). Let A € M(m,n), B € M(n, k) and
C € M(k,p). Then,
A(BC) = (AB)C.

Proof: Write A = [a;;], B = [bj¢] and C' = [c], where 1 <i<m, 1 <j < n,
1</l<kand 1 <r <p. Then,
AB = [dig], (35)
where .
dig = Z aijbje (3.6)
=1
forl<i<mand1<{<k, and
BC = [e], (3.7)

where

k
€jr = ijecer (3.8)
=1
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for 1 <j<mand1l<r<p Wethen have that

A(BC) = [fir]

where
n
f’LT = E Ajj€jp
j=1

for 1 <1< m and 1< r < p, where we have used (3.7).
Thus, using (3.8) and the distributive property for real numbers,

n k
fir = Y ai <Z bjé%r)

n k
= g Eaijbjécérv

where we have distributed a;; in the the second sum. Thus, since interchanging
the order of summation does not alter the sum, we get that

k n
fir = D0 aibjcen

=1 j=1

k n
= > D aibe | o,
=1 \j=1

where we have used the distributive property for real numbers to factor out ¢y,

from the second sum. Using (3.6), we then have that

diecer,

o~
I\Mw
I

SO

- )Cv

k
( fzr = [Z dilch‘

{=1

since
AB=[dy] 1<i<m, 1<Kk,

by (3.5). This completes the proof of the associative property for matrix multi-
plication. O

As a consequence of the associative property of matrix multiplication, we
can define the powers, A", for n = 1,2,3..., of a square matrix A € M(n,n),
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by computing

A2 = AA

AP = AAA= A4
A = AAAA = A3A
Am = AmT1g

We define the power A° to be the n x n identity matrix I = [§;;] defined by

1 ifi=yj,
dij = e
0 ifi# 7,

for 1 <4, < n.

71

We note that two powers, A™ and A*, of the matrix A commute with each

other; that is,
Am AR = Ak A™,

To see why this is the case, use the associative property of matrix multiplication

to show that
AmAk — Am+k7

so that
AT AF = AR = AR AT,

Example 3.2.7. A square matrix, A = [a;;] € M(n,n), is said to be a diagonal
matrix if a;; = 0 for all ¢ # j. Writing d; = a;; for i = 1,2,...,n, we have that

dy 0o --- 0
0 de --- 0
A= )
0 0 dn
Then,
dy 0 0 dy 0 0 d3 0
2 0 da 0 0 do 0 0 d3
0 0 dn 0 0 dpn 0 0

By induction on m, we then see that

dm 0o --- 0
0 ar ... 0
A™ = . . . . form=1,2,3,...
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3.3 Invertibility

In Section 3.2.3 on page 65 we saw how to use the matrix product to turn the
system

a1y + a2 + -+ aRr, = by
a21T1 + a2 + -+ - + agp®y, = by
. (3.9)
Am1T1 + AmaTe + -+ kT = by,
into the matrix equation
Az =0, (3.10)
where A is the m x n matrix
a1 ai2 A1n
a21 A22 - A2
A =
Am1 Am?2 o Amn
and x and b are the vectors
Z1 b1
€2 by
T = . and b=
Tn, bim

in R™ and R™, respectively. We will see in this section how matrix algebra and
the vector space theory that we developed in the study of Euclidean spaces can
be used to answer questions regarding the solvability of the system in (3.9),
which is equivalent to the matrix equation in (3.10). For instance, suppose we
can find a matrix C' € M(n, m) with the property that

AC =1, (3.11)

where I denotes the identity matrix in M(m,m). Then, using the associativity
of the matrix product, which we proved in Proposition 3.2.6, we see that

A(Cb) = (AC)b = Ib =1,

so that x = Cb is a solution to the matrix equation in (3.10). A matrix C €
M(n, m) with the property that AC = I is called a right—inverse for A.

3.3.1 Right and Left Inverses

Definition 3.3.1 (Right-Inverse). A matrix A € M(m,n) is said to have a
right—inverse if there exists a matrix C' € M(n, m) with the property that

AC =1,

where I denotes the identity matrix in M(m,m).
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We have just proved the following

Proposition 3.3.2. Suppose that A € M((m,n) has a right-inverse. Then, for
any vector b € R, the matrix equation

Ax =0
has at least one solution.
2 -1 -3
Example 3.3.3. Let A = 1 1 1] . Then, the matrix
1 2 3
1 -3 2
C=|-2 9 -5
1 -5 3
is a right—inverse for A since AC' = I, where I is the 3 x 3 identity matrix.
b1
Then, for any b= [ by | € R?,
b3
1 -3 2 b1 b1 — 3bs + 2b3
r=Cb= [ -2 9 -5 bo | = | —2b7 + 9by — 5bs
1 -5 3 b3 b1 — bby + 3b3
is a solution to the equation
Az =D
and, therefore, it is a solution to the system
21‘1 — T2 — 3],‘3 = bl
T1+ x2+ 23 = by
Iy +2£L’2+3£B3 = bg,

for any scalars by, by and bs.

We now turn to the question: When does the equation Ax = b have only
one solution?

Definition 3.3.4 (Left-Inverse). A matrix A € M(m,n) is said to have a left—
inverse if there exists a matrix B € M(n, m) with the property that

BA=1,
where I denotes the identity matrix in M(n,n).

Proposition 3.3.5. Suppose that A € M(m,n) has a left-inverse. Then, for
any vector b € R™, the matrix equation

Az =D

can have at most one solution
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Proof: Assume that A has a left—inverse, B, then BA = I.
Suppose that v,w € R™ are two solutions to the equation Ax = b. It then
follows that

Av=>b and Aw=0b.

Consequently,
Av = Aw.

Thus,
Av — Aw = 0.

Using the distributive property for matrix multiplication proved in Proposition
3.2.5 we then obtain that

A(v—w) =0.
Multiply on both sides by B we obtain that
B[A(v — w)] = BO,
so that, by the associative property of the matrix product,
(BA)(v —w) = 0,

or
I(v—w)=0.

We therefore get that v — w = 0, or v = w. Hence, Ax = b can have at most
one solution. O

Corollary 3.3.6. Suppose that A € M(m,n) has a left-inverse. Then, the
columns of A are linearly independent.

Proof: Assume that A has a left-inverse and write A = [(vl vy - vn)],
C1
C2

where vy, vo,...,v, € R™ are the columns of A, and suppose that | . is a
Cn

solution to the vector equation
c1v1 + eV + - - -+ cpv, =0,

which can be written in matrix form as

C1

C2
Al .| =0.

Cn
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C1
C2
Thus, . is a solution to

Cn

Az =0. (3.12)

Since, A has a left-inverse, it follows from Proposition 3.3.5 that the equation
in (3.12) has at most one solution. Observe that the z = 0 is already a solution
of (3.12). Consequently,

cpo=c=-=c¢, =0,
and therefore the set {vy,vs,...,v,} is linearly independent. O]

Theorem 3.3.7. Let A € M(m,n) have a left-inverse, B, and a right—inverse,
C. Then, m =n and B = C.

Proof: Assume that A € M(m,n) has a left-inverse, B, and a right-inverse,
C. By Corollary 3.3.6, the columns of A are linearly independent. Denote the

columus of A by vy, vs,...,v,. We show that {vy,vs,...,v,} spans R™. To see
why this is so, let b € R™ and consider the equation
Ax =b. (3.13)

Since A has a right inverse, it follows from Proposition 3.3.2 that equation (3.13)
has a solution. Thus, there exist scalars x1, o, ..., x, such that

2101 + Tav2 + -+ Xpvy = b,

so that b € span{vy,ve,...,v,}.

We have shown that {vi,vs,...,v,} is linearly independent and spans R™.
Hence, it is a basis for R™ and therefore n = m, since dim(R™) = m.

Next, multiply BA = I by C on the left to get

(BA)C =1IC
or, by the associative property,
B(AC) =C,
which implies that BI = C or B =C. O

3.3.2 Definition of Inverse

Theorem 3.3.7 is the basis for the following definition of invertibility for a square
matrix.

Definition 3.3.8. A square matrix, A € M(n,n), is said to be invertible is
there exists a matrix B € M(n,n) such that

BA=AB =1,

where I denotes the n x n identity matrix.



76 CHAPTER 3. SPACES OF MATRICES

As a consequence of Theorem 3.3.7 we get the following

Proposition 3.3.9. Let A € M(n,n) and suppose that there exists a matrix
B € M(n,n) such that
BA=AB =1,

where I denotes the n x n identity matrix. Then, if C' € M(n,n) is such that
CA=AC =1,
then C' = B.

Hence, if A € M(n,n) is invertible, then there exists a unique matrix B €
M(n, n) such that
BA=AB=1.

Definition 3.3.10. If A € M(n,n) is invertible, then the unique matrix B €
M(n, n) such that
BA=AB=1

is called the inverse of A and is denoted by A~

Example 3.3.11. Suppose that A € M(n,n) is invertible. Then, A~ is also
invertible and

(A )= a4
To see why this is so, simply observe that, from
ATTA=AA =1,

A is both a right-inverse and a left-inverse of A1,

3.3.3 Constructing Inverses

1 -3 2
In Example 3.3.3 we saw that C = [ =2 9 —5] is a right—inverse of the
1 =5 3
2 -1 -3
matrix A = 1 1 1| . We can also compute CA = I, so that C is also
1 2 3

a left-inverse of A and therefore A is invertible with inverse A~! = C. In this
section we present an algorithm based on elementary row operations which can
be used to determine whether a given square matrix is invertible or not and to
compute its inverse, if it is invertible.

Before we proceed any further, let’s establish the following lemma which is
very useful when looking for inverses.

Lemma 3.3.12. If A € M(n,n) has a left inverse B, then A is invertible and
A7l =B.
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Proof: Assume that A € M(n,n) has a left inverse B. By Corollary 3.3.6,
the columns of A form a linearly independent subset, {vi,va,...,v,}, of R™.
Hence, since dim(R™) = n, it follows that {v1, va,...,v,} is a basis for R™ and,
therefore, {v1,va,...,v,} spans R™. Consequently, any vector in R™ is a linear
combination of the vectors in {v1,vs,...,v,}. In particular, there exist ¢;;, for
1 < 1,7 < n, such that

C11V1 + C21V2 + -+ -+ Cp1Vy = €
C1201 + C22V2 + - -+ Cp2Up = €2
Cip¥1 + CopU2 + -+ - + CppUy = €1,

where {e1, ez, - ,e,} is the standard basis is R”. We then get that

1,
A c?j =ej
Cnj
for j =1,2,...,n. Consequently, if we set C' = [¢;;] for 1 <4, j < n, we see that
AC; = ey,

where C} is the jth column of C; in other words
AC = [ACl ACQ s ACn} = [61 €y en] =1.
We have therefore shown that A has right—inverse, C. Thus, A has both a right
and a left inverse, which shows that A is invertible and therefore A~! = B. O
It is also possible to prove that, if A has a right—inverse, then A is invertible.

Proposition 3.3.13. If A € M(n,n) has a right—inverse, C, then A is invertible
and A~! = C.

Proof: Assume A € M(n,n) has a right-inverse, C' € M(n,n); then
AC = 1. (3.14)
Taking transpose on both sides of (3.14) yields
cTAT =1, (3.15)

where we have used the result of Problem 3 in Assignment #15. It follows
from (3.15) that AT has a left-inverse. Thus, applying Lemma 3.3.12, AT is
invertible with inverse (A7)~ = CT. Finally, applying the result of Problem 5
in Assignment #16, we obtain that A = (AT)T is invertible with

A—l _ [(AT)—I]T — (CT)T _ C,

which was to be shown. O
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Corollary 3.3.14. Let A € M(n,n). If the columns of A are linearly indepen-
dent, then A is invertible.

Proof: Write A=[v1 w2 --- w,], where v1,v9,...,v, € R" are the columns
of A. Assume that the set {vy,vs,...,v,} is linearly independent; then, since
dim(R"™) = n, {v1,va,...,v,} forms a basis for R™. In particular, {vy,vs,...,v,}

spans R" so that, for any b € R", the equation
Ax =10
has a solution in R™. Applying this result to the equations

Az =e;, forj=1,2,...,n,

where {e1, ea,. .., ey} is the standard basis in R™, we obtain vectors wy, wa, . .., w, €
R"™ such that
Aw; =e¢;, forj=1,2,...,n. (3.16)
Set C'=[w; ws --- wyl; then
AC = [Awy Aws -+ Aw,)
= [e1 ex - e
= 1

where we have used (3.16). It follows that A has a right—inverse. Consequently,
by Proposition 3.3.13, A is invertible. O

Next, we introducing the concept of an elementary matrix.

Definition 3.3.15 (Elementary Matrix). A matrix, £ € M(n,n), which is
obtained from the n x n identity matrix, I, by performing a single elementary
row operation on [ is called an elementary matrix.

Example 3.3.16. Start with the 3 x 3 identity matrix I = and

o O =
o = O
_ o O

perform the elementary row operation cR; + R3 — R3 to obtain
1 00
E=10 1 0
c 0 1

Observe that if we multiply any 3 x 3 matrix A on the left by the matrix F
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in Example 3.3.16 we obtain

1 0 0 a11 Q12 Aas
FA = 01 0 21 A22 0423
c 0 1 asy a3z Aass

ari ai2 as

= a21 a22 a23

ca1l +agy caiz +age caiz + asg

Ry
= RZ )
cRi1 + R3

where R;, Ry and Rs denote the rows of A. Hence, the effect of multiplying
A by E on the left it to perform the same elementary row operation on A that
was used on I to obtain E. This is true of all elementary matrices.

Note that we can revert from E to the identity by performing the elementary
row operation —cR;+ R3. This is equivalent to multiplying E by the elementary
matrix

1 00
F= 0 1 0
—c 0 1
We then get that
FE=1,

and therefore, by Lemma 3.3.12, F is invertible with E~! = F. This is also true
for all elementary matrices; that is, any elementary matrix is invertible and its
inverse is an elementary matrix.

We summarize the previous two observations about elementary matrices in
the following

Proposition 3.3.17. Let F € M(m,m) denote an elementary matrix.

(i) For any matrix A € M(m,n), EFA yields a matrix resulting from A by
performing on A the same elementary row operation which led from I €
M(m,m) to E.

(ii) E is invertible and its inverse is also an elementary matrix.

Definition 3.3.18 (Row Equivalence). A matrix A € M(m,n) is said to be
row equivalent to a matrix B € M(m,n) if there exist elementary matrices,
Ey, Es,...,E; € M(m,m) such that

EyEy_1---EyE1A=B.

The most important example of row equivalence for this section is the case
in which and n x n matrix, A, is row equivalent to the identity I € M(n,n).
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Proposition 3.3.19. If A € M(n,n) is row equivalent to the identity, then A
is invertible and
AT = EyEy_y - By Fy,

where E1, Es, ..., E, are n X n elementary matrices.

Proof: Assume that A € M(n,n) is row equivalent to the identity I € M(n,n).
Then, there exist elementary matrices, E1, Fs, ..., Ex € M(n,n) such that

EvE,_1---EsE1A=1,
or
(ExEg—1---EsE1)A=1.
It then follows from Lemma 3.3.12 that A is invertible and
A ' = EvEi_, - EyE.
O

Thus, if A is invertible, to find its inverse, all we need to do is find a sequence
of elementary matrices F1, Eo, ..., Ex € M(n,n) such that

EyEy_1---EyE1A=1.

Since multiplying by an elementary matrix on the left is equivalent to performing
an elementary row operation on the matrix, FyFy_1--- EaF1 A is the result
of performing k successive elementary row operations on the matrix A. The
product EpFE)_1---EoFEq keeps track of those operations. This can also be
done by performing elementary row operations on the augmented matrix

[ A | T]. (3.17)
Performing the first elementary row operation on the matrix in (3.17) yields
[E1A | EiD
or
[E1A | Ei ]

Performing the second elementary row operation on the augmented matrix in
(3.17) then yields
[ E1E1WA | ERE4 ).

Continuing in this fashion we obtain
[ ExEx—1--E1E1A | EpEp - Exky |,
or
[T | A1 (3.18)

Hence, if after performing elementary row operations on the augmented matrix
in (3.17) we obtain the augmented matrix in (3.18), we can conclude that A is
invertible and and its inverse is the matrix obtained in the right—hand side of
the augmented matrix in (3.18).
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Example 3.3.20. Use Gaussian elimination to compute the inverse of the ma-
trix

2 -1 -3
A= 1 1 1
1 2 3

Solution: Begin with the augmented matrix

2 -1 -3 | 100
1 1 11]010]. (3.19)
1 2 3] 001

Then, perform the elementary row operations Ry <> R, —2R; + Ry — Ry and
—R; + R3 — Rj3 in succession to turn the matrix in (3.19) into

1 1 1] 0 1 0
0 -3 =5 | 1 -2 0]. (3.20)
o 1 2] 0 -1 1

Next, perform on the augmented matrix in (3.20) the elementary row operations
Ry <+ R3 and 3Ry + R3 — Rj3 in succession to get

1 1 1] 0 1 0
o 1 2] 0 -1 1]. (3.21)
o 0 1| 1 -5 3

Finally, perform the elementary row operations —2R3 + Ry — R, —R3+ Ry —
R; and —Ry + R; — R; in succession to obtain from (3.21) the augmented
matrix

1 0 0| 1 -3 2
o 1 0] -2 9 —5|. (3.22)
o o 1] 1 -5 3
We then read from (3.22) that
1 -3 2
Al=-2 9 -5
1 -5 3

O

It follows from Proposition 3.3.19 and the fact that the inverse of an ele-
mentary matrix is also an elementary matrix that every invertible matrix is the
product of elementary matrices. Indeed, if A is an invertible n x n matrix, then,
by virtue of Proposition 3.3.19,

AV = EvEy_1 - EyE, (3.23)

where F1, Es, ..., E; are n X n elementary matrices. Thus, taking inverses on
both sides of (3.23),
A=E['E;t - BN

We have therefore proved the following proposition.
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Proposition 3.3.21. Every invertible n X n matrix is a product of elementary
matrices.

3.4 Nullity and Rank

Given an m x n matrix, A, we can define the following subspaces associated
with A:

1. The column cpace of A, denoted by C4 is the subspace of R™ defined
as the span of the columns of A; that is, if A=[v; vy --- v,], then

Ca = spanf{vy,va, ..., v}

Example 3.4.1. Let A denote the matrix

1 3 -1 0
2 2 2 4. (3.24)
1 0 2 3

Then, C4 is the subspace of R3 given by

1 3 -1 0
C4 = span 21,121, 21,1 4
1 0 2 3

We saw in Problem 2 of Assignment #9 that the set

1 3
2 .1 2
1 0

is a basis for C4. Hence, dim(C4) = 2.

Definition 3.4.2 (Column Rank). Given an m x n matrix, A, the dimen-
sion of C is called the column rank of the matrix A. In these notes, we
will denote the row rank of A by ¢(A); thus,

¢(A) = dim(Ca).
Observe that, since C4 is a subspace of R™,

c(A) < m.

2. The row space of A, denoted by R 4, is the subspace of M(1, n) spanned
by the rows of A. If we let Ry, Rs, ..., R,, denote the rows of A, then

Ra =span{Ry, Ra,...,Rn}.
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The dimension of the row space of A is called the row rank of A and we
will denote it by r(A4). We then have that

r(A) <n,
since R 4 is a subspace of M(1,n) and dim(M(1,n)) = n.

Example 3.4.3. Let A denote the matrix in Example 3.4.1 given in (3.24).
We would like to compute the row rank of A. In order to do this we need to
find a basis for the span of the rows of A. Denote the rows of A by Ry, Ro
and Rs. We can find a linearly independent subset of { Ry, R2, R3} which
also spans R 4 by performing elementary row operations on the matrix A
and keeping track of them as follows: Start with the matrix

R 1 3 -1 0
R, 2 2 2 4], (3.25)
Rs 1 0 2 3

where we are keeping track of the operations on the left—-hand side of
(3.25). Performing —2R; + Ry — R and —R; + R3 — Rj3 in succession
on the matrix in (3.25) and keeping track of the results of the operations
on the left of the matrix in (3.25) yields

Ry 1 3 -1 0
—2R1 + Ry 0 —4 4 4 1. (3.26)
—R1 + Rs3 0 -3 3 3

Next, perform the operations —iRg — Ry and 3Ry + R3 — R3 in succes-
sion to the matrices in (3.26) to get

Ry 1 3 -1 0
3R — 1R, 0 1 -1 -1 (3.27)
—%Rl — %Rg + R3 0 0 0 0

We then get from the matrices in (3.27) that
1 3
—§R1 — ZRQ + R3 =0,
where O denotes the zero matrix in M(1,4). Hence,
1 3

Rs = §R1 + ZRQ,

which shows that Rs € span{R;, Ra} and therefore
span{Rl, RQ, Rg} = span{Rl, RQ}

Since R; and Ry are clearly not multiple of each other, it follows that

{R1, Rz} is linearly independent and therefore it is a basis for R 4. It then
follows that r(A) = dim(R4) = 2.
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3. The null space of A, denoted by N4 is the subset of R” defined by
Ny={veR" | Av=0}.

N4 is a subspace of R™. In order to see why this is so, first observe that
N4 # 0 since 0 € N4 because A0 = 0. Next, suppose that v, w € Na;
then

Av=0 and Aw=0.

It then follows from the distributive property for matrix multiplication
that
Av4+w)=Av+ Aw=0+0=0,

and so v +w € Ny; thus, N4 is closed under vector addition. Finally,
note that for any v € R” and ¢ € R,

Ry

Ry
A(ev) = .| (ew)

Rm.(cv)

(RT, cv)
(RS, cv)

(R cv)

Where (-,-) denotes the Euclidean inner product in R™. It then follows
from the bilinearity of the inner product that

A(cv) 2 7

¢(RE,v)
(RT,v)
R

(RT. )

= cAv.
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Thus, if v € Ny, then
A(cv) = cA(v) = c0 = 0,

which shows that cv € N4 and therefore N4 is closed under scalar multi-
plication.

Example 3.4.4. Let A denote the matrix in Example 3.4.1 given in (3.24).
To compute the null space of A, we find the solution space of the system

Az =0,
or
T+ 3T9 — T3 = 0
1 + 21’3 + 31’4 = 0.

We can use Gauss—Jordan reduction to turn the system in (3.28) into the
equivalent system

1+ 2x3+3x4 = 0 (3.29)
X9 — T3 — T4 — 0, ’
which can be solved to yield
2 3
N4 = span -1
A = SpP -1 0
0 -1
Thus, the set
2 3
-1 -1
-1’ 0
0 -1

is a basis for Ny, and therefore dim(N4) = 2.

Given A € M(m,n), the dimension of the null space, N4, of A is called
the nullity of A and we will denote it by n(A). We then have that

n(A) = dim(Na).

Observe that, an m x n matrix A, since N4 is a subspace of R, it follows
that
n(A) < n.

In the previous example we showed that for the 3 x 4 matrix A given in
(3.24), the nullity of A is n(A4) = 2.
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The main goal of this section is to prove the following facts about the row
rank, the column rank and the nullity of an m x n matrix A:

Theorem 3.4.5. Let A € M(m,n). Then,

(i) (Equality of row rank and column rank)

and
(ii) (Dimension Theorem for Matrices)
n(A) +r(A) =n.
We will therefore call the dimension of the column space of A simply the

rank of A and denote it by r(A).

We will present here a proof of the equality of the row rank and the column
rank based on an argument given by Mackiw in [Mac95, pp. 285-286]). We first
prove the following

Lemma 3.4.6. Let A € M(m,n) and denote the row space of A by R 4. Define
Ri={weR"|Rw=0fori=12,...,m},

where Ry, Ra,...,R,, denote the rows of the matrix A; i.e., Rj is the set of
vectors in R™ which are orthogonal to the vectors RY, RY,...  RL in R™. Then,

(i) R§ = Na, and
(i) if w € Mg and wT € R4, then w = 0.

Proof of (i): Observe that w € N4 if and only if Aw = 0, or

le 0
ng 0
R,,w 0

Hence, w € N4 if and only if R;w = 0 for ¢ = 1,2,..., m. This is equivalent to
NA = 'Rj O

Proof of (ii): Assume that w € Ny and w? € R%4. Then, by the result of part
(1), w € R, which implies that vTw = 0 for all vT € R4. Thus, in particular,
wlw =0, or (w,w) = 0, which implies that w = 0, by the positive definiteness

of the Euclidean inner product. O
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Proof of the equality of the row and columns ranks: Let r(A) = k. Then, there
exist wy, wa, ..., wy in R such that {w],wl,...,wl} is a basis for R4.

Consider the set {Aw;, Aws,..., Aw}, which is a subset of R™. We first
observe that

{Awy, Aws, ..., Awg} CCa. (3.30)
To see why this is the case, write w;, for j = 1,2,..., k, in terms of the standard
basis {e1, ez, ...,e,} for R™:

wj = Crje1 + Cgj€2 + -+ + Cpjln,
and apply A to get

ij = Cij€1 +ng62+"'+cnj6n

= A(cljel +62j62+"'+6nj6n)
A(crjer) + Alcgjen) + -+ + Alcnjen)
= cijder +cgjles + -+ cpjdey,

where we have used the distributive property of matrix multiplication and the
fact that A(cv) = cAwv for all scalars ¢ and all vectors v € R™. Noting that
Aeq, Aes, ..., Ae,, are the columns of A, we see that (3.30) follows.

Next, we show that {Aw, Aws, ..., Awy} is linearly independent. To prove
this, suppose that ¢y, ca,..., ¢k is a solution of the vector equation

c1Awy + c1Awg + -+ - + Awy, = 0. (3.31)

Then, using the distributive property of the matrix product and the fact that
A(cv) = cAv for all scalars ¢ and all vectors v € R™, we get from (3.31) that

A(cqwy + crwg + -+ +wg) =0,

which shows that the vector w = ciw; + ciyws + - -+ + wy, is in the null space,
N4, of the matrix A. On the other hand,

w! = cow! + cywl + - +wl, (3.32)
is in R4, since {w!,wl, ..., wl'} is a basis for R4. It then follows from part
(ii) in Lemma 3.4.6 that w = 0. We then get from (3.32) that

T T T
caqw; +cwy; +---+w, =0,

which implies that
ca=cp=---=¢ =0,

since the set {w{,wl’, ..., w{} islinearly independent. We have therefore shown
that the only solution to the vector equation in (3.31) is the trivial solution, and
hence the set { Awy, Aws, ..., Awy} is linearly independent. It then follows from
Lemma 2.10.5 that

k< e(A),
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or
r(A) < c¢(4). (3.33)
Applying the previous argument to A” we see that
r(AT) < (A7),

which is equivalent to
c(4) < r(4). (3.34)

Combining (3.33) and (3.34) proves the equality of the row and column ranks.
O

Next, we preset a proof of part (ii) of Theorem 3.4.5, the Dimension Theorem
for Matrices. In the proof we will use the following Lemma, which is Theorem
3.13 (the Expansion Theorem) in Messer, [Mes94, pg. 119].

Lemma 3.4.7. Let {wy,ws,...,w;} denote a linearly independent subset of
R"™. If k£ < n, there exist vectors vy, vs,...,vp in R™ such that

{’U}l,’wz,...7’LUk,U1,’U27...,’Ue}

is a basis for R™, where k 4+ ¢ = n.

Proof: Since k < n, span{wy, wa,...,w;} # R™ because dim(R™) = n. Hence,
there exists v; € R™ such that v; € span{w;,ws,...,wi}. Consequently, by
Lemma 2.8.2 on page 42 in these notes, {wy, ws, ..., wg,v1} is linearly indepen-
dent. If

{wy,wa, ..., wg,v1}

spans R", it is a basis for R” and the Lemma is proved in this case. If not,
there exists vo € R™ such that vy & span{w;,ws, ..., wg,v1}. Thus, invoking
Lemma 2.8.2 again, the set {wy,wa, ..., wg,v1,v2} is linearly independent. If
{w1,wa, ..., wg,v1,v2} also spans R™, the Lemma is proved. If not, we continue
as before. We therefore conclude that there exist vy, vs,..., vy in R™ such that

{wl,wg, vy WE,V1,02, ... ,’Ug}
is a linearly independent subset such that
span{wy, wa, ..., Wk, V1, V2,...,v} = R™
This proves the Lemma. O

Proof of the Dimension Theorem for Matrices: We show that for any m xn ma-
trix, A,
n(A) +r(A) =n, (3.35)

where n(A) is the nullity of A and r(A) is the rank of A, which we know to be
the same as the dimension of the columns space of A, C4.



3.4. NULLITY AND RANK 89

If n(A) = 0, then N4 = {0} and therefore the equation
Az =0

has only the trivial solution and, therefore, the columns of A are linearly in-
dependent. Thus, they form a basis for the column space of A and therefore
dim(C4) = n; that is, 7(A) = n which implies (3.35) for the case n(A) = 0.

Thus, assume that n(A) = k& > 0. Then, since N is a subspace of R",
1 < k < n. Let {wy,ws,...,wx} denote a basis for Ny. If k = n, then
N4 = R™, since dim(R™) = n and therefore Az = 0 for all z € R™ and therefore
all the columns of A are the zero vector in R™, which implies that C4 = {0};
therefore, dim(C4) = 0, which shows that r(A) = 0 and therefore 3.35) holds
true for the case n(A4) = n.

Next, consider the case 1 < k < n. Then, by Lemma 3.4.7, we can find
vectors v, va,...,vp in R™ such that {wy,ws,..., wg,v1,vs,...,v,} is a basis
for R™, where

k40 =n. (3.36)

It remains to prove that
¢ =dim(Ca); (3.37)

for, if (3.37) is true, then equation (3.36) implies (3.35) and the Dimension
Theorem for Matrices is proved.
In order to prove (3.37), consider the set

B = {Avy, Ava,. .., Ave}.

First note that B is a subset of C4 since each Avj, for j =1,2,...,¢, is a linear
combinations of the columns of A.

We first see that B spans C4. To show this, let w € C4. Then, w is a linear
combination of the columns of A, which implies that w = Av for some v € R™.
Since the set {wy,wa, ..., wk, v1,v9,..., v} is basis for R™, there exist scalars
dy,ds,...,dg,c1,C,...,co such that

v =dywy + dowsg + - - - + dpwy, + c1v1 + 2V + - - - + vy,

Then

w = Av
A(dywy + dowsa + -+ - + dgwy, + c1v1 + cova + -+ - + covyp
= diAwi + doAwg + - - - + dp Awy, + c1Avy + o Avg + - - - + cpAvy,

where we have used the distributive property of matrix multiplication and the
fact that A(cv) = cAw for all scalars ¢ and all vectors v € R™. It then follows,
since wy, wa, ..., w, € Ny, that

w = c1Avy + o Avg + - - - + cpAvy,

which shows that w € span(B) and therefore C4 = span(B).
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Next, we prove that B is linearly independent. To see why why this is the
case, suppose that c1,co, ..., cx is a solution of the vector equation

c1Avy + c1Avg + -+ + Avp = 0. (3.38)

Then, using the distributive property of the matrix product and the fact that
A(cv) = cAv for all scalars ¢ and all vectors v € R™, we get from (3.38) that

A(civy + cqvg + -+ vg) =0,

which shows that the vector w = cjv1 + c1v2 + -+ - + vy is in the null space,
N4, of the matrix A. Thus, since {w1,wa, ..., wg} is a basis for N4, there exist
scalars di,ds, ..., d; such that

w = diwy + dows + - - - + dpwy.
It then follows that
c1v1 +cvg + -+ v = dywy + daws + - -+ + dpwy,
from which we get that
(=d)wr + (—do)wa + -+ - + (—=dp)wg + c1v1 + crvg + -+ + v, = 0.

We now use the fact that {wq,ws,...,wg,v1,v2,...,v¢} is basis for R” to con-
clude that
cp=cy=---=¢p=0.

We have therefore shown that the only solution to the vector equation in (3.38)
is the trivial solution, and hence the set { Avy, Avs, ..., Avs} is linearly indepen-
dent. This proves (3.37) and the proof of the Dimension Theorem for Matrices
is now complete. O



Chapter 4

Linear Transformations

The main goal of this chapter and the next is solve the problem stated in Chapter
1, which has served as the motivation for theory of vector spaces and matrix
algebra that we have developed so far. The problem is simple to state:

Problem 4.0.8 (Euler’'s Theorem on the Axis of Rotation (see [PPR09])).
Imagine a ball whose center is at a fixed location in three—dimensional space, but
s free to rotate about its center around any axis through the center. The center
of the ball is not allowed to move away from its fixed location. Imagine that
we perform several rotations about various axes, one after the other. We claim
that there are two antipodal points on the surface of the ball which are exactly
at the same locations they were at the beginning of the process. Furthermore,
the combination of all the rotations that we perform has the same affect on the
ball as that of a single rotation performed about the axis going through the fixed
antipodal points.

/

In order to prove the claims stated in Problem 4.0.8, we will first model a

91
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rotation in R? by a function,
R: R® = R?,

which takes a point v in the ball and yields a point R(v), also in the ball, which
locates the point v after the rotation has been performed. Note that (i) every
point v in R? is mapped to a point R(v) by the rotation (R(v) could be the same
point as v; for example, if v is on the axis of rotation, then R(v) = v); (ii) no
point in R? gets mapped to more than one point by the rotation R. Hence, R
does indeed defines a function. It is an example of a vector valued function
defined on an Euclidean space.

4.1 Vector Valued Functions on Euclidean Space

A vector valued function,
f:R" = R™, (4.1)

assigns to each vector, v, in R™ one vector, f(v), in R™. We have already seen
examples of these functions in this course. For instance, the function f: R™ — R
given by

f(v)=v|| forall veR",

where || - || denotes the Euclidean norm in R™. In this case m = 1. Also, for a
fixed w € R", define

f(w) = (w,v) forall veR"

where (-,-) denotes the Euclidean inner product in R™; then, f is also a map
from R™ to R.

The set R™ in (4.1) is called the domain of the function f, while R™ is
called the co-domain of f.

Definition 4.1.1 (Image). Given a function f: R™ — R™ and a subset, S, of
R™, the image of S under f is the subset of R™, denoted by f(S), and defined
as follows

f(S) ={w e R™ | w = f(v) for some v € S}.

In other words, f(S) is the set to which the vectors in S get mapped by the
function f.

Example 4.1.2 (Rotations in R?). Let Ry: R* — R? denote the function that
takes every line through the origin in R? and rotates it through an angle of @ is
the counterclockwise sense. Figure 4.1.1 shows a typical line through the origin,
L, and its image, Rg(L) under the rotation Ry.

Suppose that the line L is generated by a vector v # 0; that is, L = span{v}.
The image of v under Ry is the vector Ry(v) in Ry(L). Since a rotation does
change the length of vectors, it follows that ||[Rg(v)|| = ||v|| # 0. Thus, the
vector Ry(v) can be used to generate Ry(L); that is, Rg(L) = span{Ry(v)}. We
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Ro(L)

Figure 4.1.1: Image of a line under rotation

then get that for any vector w € L, w = tv for some scalar ¢, and Ry(tv) € Ry(L)
so that
Ry(tv) = sRy(v), (4.2)

for some scalar s. Again, since Ry does not change lengths of vectors, it follows
from (4.2) that
[tlllvll = Islllvll,

from which w get that |t| = |s|, since v # 0. Observe also that, for 0 < 6 <,
Ry does not reverse the orientation the vector v, so that ¢ and s must have the
same sign. We therefore conclude that ¢ = s and therefore (4.2) turns into

Ro(tv) = tRo(v); (4.3)

that is Ry takes a scalar multiple of v to a scalar multiple of Rg(v) with the
same scaling factor.

Next, consider two linearly independent vectors, v and w, in R?. The vectors
v and w generate a parallelogram defined by

Plo,w)={tv+sw|0<t<1,0<s< 1}

and pictured in Figure 4.1.2

Observe from the picture in Figure 4.1.2 that the diagonal of P(v,w) going
from the origin to the point determined by v + w gets mapped by Ry by the
corresponding diagonal in the parallelogram P(Rp(v), Rg(w)); namely, the one
determined by Rg(v) + Rg(w). It then follows that

Rg(v + w) = Re(’u) + Rg(w); (4.4)

that is, the rotation Ry maps the sum of two vectors to the sum of the images
of the two vectors.
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Y
Ro(v + w) v+ w
Rp(v) w
0
Rg(’w — v
x

Figure 4.1.2: Image of a parallelogram under rotation

In Example 4.1.2 we have shown that the function Ry maps the scalar mul-
tiple of a vector to the scalar multiple of its image with the same scaling factor
(this is (4.3)), and it maps the sum of two vectors to the sum of their images
(see Equation (4.4)); in other words, Ry preserves the vector space operations
in R%2. A function satisfying the properties in (4.3) and (4.4) is said to be a
linear function. We will spend a large portion of this chapter studying linear
functions and learning about their properties. We will then see how the theory
of linear functions can be used to solve Problem 4.0.8.

4.2 Linear Functions
Definition 4.2.1 (Linear Function). A function T: R™ — R" is said to be a
linear function, or a linear transformation, if 7" satisfies the properties

(i) T'(cv) = ¢I'(v) for all scalars ¢ and all v € R™, and

(ii) T(u+v) =T(u) + T(v) for all u,v € R™.

Example 4.2.2. Let A € M(m,n) and define T: R® — R™ by
T(v) = Av for all v € R™;

that is, T'(v is obtained by multiplying the column vector v by the m x n matrix
on the left. Then, T is a linear function.

To see why T is linear, use the fact that A(cv) = cAwv for all scalars ¢ and
vectors v. This proves that (i) in Definition 4.2.1. Next, use the distributive
property in matrix algebra to see that

Alv+w) = Av+ Aw for all v,w € R".

This proves that (ii) in Definition 4.2.1 holds true.
We therefore conclude that T'(v) = Av, where A is an m x n matrix, defines
linear function from R™ to R”.
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Example 4.2.3 (Reflection on the z—axis). Let R: R? — R? denote refection
of the z—axis; that is, for each v € R?, R(v) determines a point in R? lying on
a line through the point determined by v and perpendicular to the z—axis. The
point determined by R(v) lies on one of the two half-planes determined by the
r—axis, which is opposite to that of where the point determined by v is located,
and the distance from v to the z—axis is the same as the distance from R(v) to
the z—axis (see Figure 4.2.3).

[\ R(v)

Figure 4.2.3: Reflection on the z-axis

Observe that if the coordinates of v are <9yc), then the coordinates of R(v)

are (_5) It then follows that

n(3)= ()
a()-(o )C)

Thus, R is of the form R(v)Av, where A is the 2 x 2 matrix given by
1 0
A= ( Lo ) |

Consequently, by the result presented in Example 4.2.2, R is a linear function
from R? to R2.

which we can write as

Remark 4.2.4. Linear transformations form a very specialized class of vector
valued functions. It is important to bear in mind that not all functions between
Euclidean spaces are linear. For example, we have already encountered in this
course the function f: R™ — R given by

f)=|lv|| for all v e R",

where || - || denotes the Euclidean norm in R™. To see why f is not linear, simply
consider the case of the vectors

() ()
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in R%. Observe that f(v) = 1 and f(w) = 1; however, f(v+ w) = f(0) = 0.
This, f(v+w) # f(v) + f(w), and therefore condition (ii) in Definition 4.2.1 is
not fulfilled.

Most functions dealt with in a single variable Calculus course are not linear.
For instance, the quadratic function f(z) = 22 for all € R is not linear since

fla+y) =2+ 9> + 2y,

so that, if  and y are not 0, f(z + y) # f(z) + f(y). Another example is
provided by the sine function. Recall that

sin(z + y) = cos(y) sin(z) + cos(x) sin(y).
In fact, the only linear function, f: R — R, according to Definition 4.2.1, is
f(z) =ax forall z e R,

where a is a real constant. This is essentially the one-dimensional version of
Example 4.2.2.

Functions that are not linear are usually referred in the literature as non-
linear functions, even though they actually form the bulk of functions arising
in the applications of mathematics to the sciences and engineering. So, why do
we spend a whole semester—course studying linear functions? Why not study
the class of all functions, linear and nonlinear? There are two reasons for the
in—depth study of linear functions. First, there is a rich, beautiful, complete
and well known theory of linear functions, a glimpse of which is provided in this
Linear Algebra course. Secondly, understanding linear functions provides a very
powerful and simple tool for studying nonlinear functions. A very common ap-
proach in applications is to use linear functions, when possible, to approximate
nonlinear functions. In a lot of cases, the behavior of the linear approxima-
tion near a point in R” yields a lot of information about the nonlinear function
around that point.

We will see in the next section that the function T'(v) = Av, where A is an
m X n matrix, given in Example 4.2.2 is essentially the only example of a linear
transformation form R"™ to R™.

We end this section by presenting an important class of linear transforma-
tions in R”.

Example 4.2.5 (Orthogonal Projections). Let u denote a unit vector in R™ and
let L = span{u}; that is, L is the line through the origin in R? in the direction
of u. For each v in R™, we denote by P,(v) the point in L that is the closest to
v. For instance, if v = tu, for some scalar ¢, then P,(v) = P,(tu) = tu. Thus,
P, defines a mapping from R,, to R,, whose image, Zp,, is the line L. We prove
that

P,: R" - R"

is a linear function.
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T Y
span{u}

Figure 4.2.4: Orthogonal Projection

Before we prove the linearity of P,, we first get a formula for computing
P,(v) for any v € R™. In order to do this, we define the function

ft)=|lv—tul* forallt €R;

that is, f(t) gives the square of the distance from v to the point tu on the line L.
Figure 4.2.4 shows the situation we are discussion in R3. Using the Euclidean
inner product, we can write f(t) as

f&) = (v—tu,v—tu)

(v,0) + (v, —tu) + {(—tu,v) + (—tu, —tu)
vl = 26w, w) + 2 lul?,

where we have uses the bi-linearity of the Euclidean inner product. We therefore
get that
F(&) = [[ol* = 2t(v, u) + 12,

since w is a unit vector. Thus, f(¢) is a quadratic polynomial in ¢ which can be
shown to have an absolute minimum when

t = (v, u).

Hence,
P,(v) = (v, u)u.

The linearity of P, then follows from the bi-linearity of the inner—product.

4.3 Matrix Representation of Linear Functions

In this section we show that every linear transformation from R"™ to R™ can
be expressed as multiplication by an m X n matrix. In order to show this,
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observe that any vector, v, in R™ can be expressed as a linear combination of
the standard basis, &, = {e1, ea,...,e,}, in R™; that is,

U =1T1€1 + T2€2 +*+ + Tnep,

where x1, 9, ...,x, are the coordinates of v relative to the basis &,
Ty
T2
e, = | .
In

Thus, if T is a linear transformation from R™ to R™, then

Tw) = T(x1e1+ zaea+ -+ xpey)
= T(x1e1) + T(xge2) + -+ + T(xnen)
= x1T(e1) + z2T(e2) + -+ + x,T(en),

where we have used properties (i) and (ii) defining a linear transformation
in Definition 4.2.1. We have therefore shown that a linear transformation,
T:R™ — R™, is completely determined by what T does to the standard basis
in R™. Writing T'(v) in terms of its coordinates relative to the standard basis
Em in R™, we get that

[T(v)]g, =21 [T(el)]gm + T2 [T(GZ)]gm +o Tty [T(en)]gm ) (4.5)

m

in other words, the coordinate vector of T'(v) relative the standard basis, &, is a
linear combination of the coordinate vectors of T'(e1),T(ez2),...,T(e,) relative
to En.

The expression in (4.5) can be written in terms of the matrix product as
follows

T, = [Tels, Tee, - Teals] | |,
or
[T()]e, = [[T(e)]g, [T(e2)le [T(en)ls,,] [Vlg,, (4.6)
We denote the matrix [[T'(e1)]s  [T(e2)]e -+ [T(en)]e | in (4.6) by

M and call it the matrix representation of T relative to the standard bases,
&, and &, in R” and R™, respectively, and denote it by M,. We then have
that

[T()lg,, = M, [vlg (4.7)

m m

and usually write
T(v) = M, v (4.8)
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with the understanding that T'(v) and v are expressed in terms of their coordi-
nates relative to the standard bases in R™ and R", respectively. The matrix rep-
resentation of T, M., is obtained by computing the vectors T'(e1), T'(e2), ..., T(ey)
and putting them as columns in the matrix M, , in that order; that is,

M, = [T(el) T(ex) --- T(en)] . (4.9)
The value of T'(v) is then computed by using the equation in (4.8).

Example 4.3.1 (Rotations in R? (continued)). Let Ry: R? — R? denote ro-
tation in R? through an angle of 6 is the counterclockwise sense. We saw in
Example 4.1.2 that Ry is linear. In this example we compute the matrix rep-
resentation for Rg. In order to do this we compute Ry(e1) and Ry(es) and use
these as the columns of M, . Inspection of the sketch in Figure 4.3.5 reveals

Y
}{9(62) €2
0
}%3(61)
0
€1 T

Figure 4.3.5: Ry(e1) and Ry(ez2)
cos —sin@
- <sin 9) and  Ry(ez) = < cos 9) ’

M :< cos —sm9>.

Ro sinf  cosf

that
1%9(61

~—

It then follows that

Thus, for any vector v = <z) in R?, the rotated image of v is given by

Ro(v) = cosf —sinf\ (x\ [xcosf —ysinf
0=\ sinf  cosd y)  \xsinf+ycosf)’
Example 4.3.2 (Rotations in R3). Give the linear transformation,
R.o:R3 - R?,

which rotates a vector around the z—axis through an angle of 6 in the counter-
clockwise sense on the xy—plane.

Solution: In this case we want

cos —sin@ 0
R.g(e1) = |sind |, R,o(e2) = cosf |, and R,g(es)= |0
0 0 1
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We then have that the matrix representation for R, g is

cos) —sinf 0
M, = sinf cosf 0
o 0 0 1

0

Example 4.3.3. Find a linear transformation, T: R?2 — R2, which maps the
square determined by the vectors e; and es to the parallelogram determined by
the vectors v; and v, in R?, and given by

Y R2 T R2

T

€2 V2

U1

€1 i

Figure 4.3.6: Picture for Example 4.3.3

=) ()

and which are pictured in Figure 4.3.6.

Solution: We define T' so that it maps e; to v; and ey to vo. We then have

that
T(er) = G) and  T(es) = (;)

Thus, since we want T to be linear, its matrix representation relative to the
standard basis in R? is, according to (4.9),

My = [1(e) 1) = (] }).

It then follows that

or
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for all (;) € R2. Notice that this function does indeed maps the parallelogram

1
1
on the upper right corner of the square gets mapped to the point determined

P(ey,ez) to the parallelogram P(vy,v3) because the point determined by

by (g) and, since T is linear, lines get mapped to lines. O

Example 4.3.4. Find a linear transformation, T: R? — R2?, which maps the
parallelogram determined by the vectors

2 1
v = (1> and vy = (2>
to the parallelogram determined by the vectors w; and wq in R2,

y R? T R2

//—\

V2

v
1 wa

Figure 4.3.7: Picture for Example 4.3.4

e (3) ()

which are pictured in Figure 4.3.7.

Solution: We define T so that it maps v to wy and v to ve; that is, T is linear
from R? to R? and
T(v1) =w; and T(ve) = we.

Thus, since we want T to be linear, its matrix representation relative to the
standard basis in R? is, according to (4.9),

MT = [T(Gl) T(EQ)] .

Thus, we need to find T'(e;) and T'(eg).
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Observe that v; = 2e1+e5 and vo = e1 +2e5. Thus, by the assumed linearity
of T,
T(Ul) = 2T(€1) + T(eg)

and
T(’Ug) = T(€1) + 2T(€2)

We therefore get the system

{ 2T (e1) + T(e2) = wy
T(el) + 2T(€2) = wa,

which can be solved for T'(e1) and T'(ez2) to yield that

o (5/13>

T(es) = (‘4é3> .

My — < 5/13 —4(/)3) .

r(3)-("2")

for all (;) € R2. 0

and

It then follows that

It then follows that

In addition to providing a way for computing the action of linear trans-
formations on vectors in their domains, the matrix representation of a linear
transformation can be used to answer questions about the linear transforma-
tion. For instance, the null space of a linear transformation 7: R™ — R" is the
set

Nr ={veR"|T(v) =0}.

The linearity of T implies that Nt is a subspace of R™. Observe that
v € N if and only if T(v) =0

or
v € Nt if and only if M7v = 0.

It then follows that the null space of T is the same as the null space of the
matrix representation, My, of T. Similarly, we can show that the image of T,

Ir ={w € R™ | w = T(v) for some v € R"}

is the span of the columns of the matrix representation, Mr, of T'.
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4.4 Compositions

Given vector—valued functions 7: R® — R™ and R: R™ — R*, we can define a
new function from R™ to R¥, which we denote by R o T, as follows
RoT(v) = R(T(v)) forallveR" (4.10)
Notice that, since T" maps R™ to R, and R™ is the domain of R, the definition
of RoT in (4.10) makes sense and yields a vector in R¥. We call the function
RoT:R"™ — RF

define in (4.10) the composition of R and T. Intuitively, the conposition of
R and T is the successive application of T and R, in that order.

It is not hard to show that, if both 7" and R are linear functions, then the
composition R o T is a linear function as well. In fact, for v,w € R™ we have
that

RoT(w+w)=R(T(v+w))=R(TW) +T(w)),
since T is linear (here we used property (ii) in Definition 4.2.1). Applying next
the linearity of R, we then get that

RoT(w+w)=R(TW))+ R(T(w)) =RoT(v)+ RoT(w).

This verifies condition (ii) in Definition 4.2.1.
We verify condition (i) in Definition 4.2.1 in a similar way:

RoT(ev) = R(T(ev)) = R(T(v)) = cR(T(v)) = cRo T(v).
We next see how the matrix representation for R o T relates to the matrix
representations for R and T. We have the following proposition:

Proposition 4.4.1. Let T: R” — R™ and R: R™ — R* denote linear functions
with corresponding matrix representations My € M(m,n) and Mr € M(k, m),
respectively, with respect to the standard basis in R, R™ and R*. Then, the
matrix representation of the composition R o T: R™ — R*, with respect to the
standard bases in R”and R¥, is given by

Mpor = MrMr7;

that is, the matrix representation of a composition of linear functions is the
matrix product of their matrix representations.

Proof: Compute RoT(e;) for j =1,2,...,n to get
RoT(e;) = R(T(e;) = R(Mre;),

since M is the matrix representation of T relative to the standard basis in R™
and R™. Using the same result for R we get

RoT(e;) = R(T(e;) = MrMrpe; forj=1,2,...,n

Thus, the columns of Mg are the columns of the matrix product Mz M7 and
the result follows. O
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Example 4.4.2 (Rotations in R? continued). We saw in Example 4.3.2 that

cosf) —sin6 0
M, = sinf cosé 0
o 0 0o 1

is the matrix representation for a rotation around the z—axis through an angel
of 6 in a direction that moves the positive z—axis towards the positive y—axis
(see Figure 4.4.8).

Figure 4.4.8: Positive rotation in R? around the z—axis through an angle 6

A similar calculation to that used to obtain M r., Shows that the matrix
representation of for a rotation, R, ,: R3 — R3, around the y-axis through an
angel of ¢ in a direction that moves the positive z—axis towards the positive
z—axis is given by

cosp 0 —singp
M, = 0o 1 o0
' sinp 0 cosy

Suppose we perform a positive rotation around the z—axis through an angle
0 followed by a positive rotation around the y—axis through an angle . Let
R: R3 — R3? denote the linear transformation which which performs the two
rotations in succession; then,

R=Ry,0R.p
and, therefore, by the result of Proposition 4.4.1,

Mp=M, M, .

6
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we then have the matrix for the transformation that combines the two rotations
in succession is

cosp 0 —sing cosf —sinfd O
Mp = 0 1 0 sinf  cosf 01,
sing 0 cosep 0 0 1
or
cospcosf) —cospsing —singp
Mp = sin 6 cos 6 0 . (4.11)
sinpcosd —singsind  cosp

Our solution to Problem 4.0.8 will show that R corresponds to a single rotation
about some axis through the origin. We will eventually learn how to determine
the axis and the angle of rotation.

Remark 4.4.3. Note that, like matrix multiplication, composition of functions
is associative. In fact, let 7: R” — R™, R:R™ — R* and S: R¥ — R? be
functions. Then,

(ToR)oS() = ToR(S(

T(R(S(v
T(Ro S(v))
— To(RoS)(

v))
)

v)
for all v € R™. It then follows that
(ToR)oS=To(RoS).

Function composition also distributes with the sum of functions. Let T: R™ —
R™, R: R™ — R* and S: R™ — R¥. We can then define the sum of R and S
as follows:

(R+ 9)(w) = R(w) + S(w) for all w € R™.

Note that this definition is possible because there is a vector addition defined
in R¥. We can then prove that
(R+S)oT=RoT+SoT.

To see why this is the case, observe that, for every v € R

(R+S)oT(w) = (R+S)(T(v)
= R(T(v))+5(T(v))
RoT(v)+ SoT(v)
— (RoT+S80T)().

Similarly, if T: R” — R"”, R: R® — R™ and S: R™ — R,

So(T+R)=SoT+SoR.
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Given a linear transformation 7: R” — R™, if My is an invertible matrix,
then we can define the transformation R: R™ — R™ by

R(w) = My'w  for all w € R™.
It then follows that
RoT(v) = R(Mpv) = My Mrv = Iv = .

That is, RoT maps every vector, v, in R™ to itself. This transformation is called
the identity transformation and we denote it by I. We then have that

RoT =1.

Similarly,
ToR=1.

Definition 4.4.4 (Invertible Transformations). A function f: R™ — R™ is said
to be invertible if there exists a function ¢g: R™ — R™ such that

fog=gof=1I,
where I: R™ — R"™ denotes the identity function; that is,
I(v)=v forall veR".

The function g is called the inverse of f, and f is the inverse of g. We usually
denote g by f~1.

We have just seen that if T: R™ — R"™ is linear and its matrix representation,
M, is invertible, then T is invertible and the inverse of T is given by

T '(v) = M;'v  forall veR™

4.5 Orthogonal Transformations

The matrix representation, Mg, given in (4.11) for the linear transformation R
given in Example 4.6.15 has the following interesting property: If we write Mg
in terms if its columns, w1, us and ug, then it is not hard to check that

Jurl =1, fJuzll =1, Jlusll =1,

and
(uj,uj) =0 for i # j.



4.5. ORTHOGONAL TRANSFORMATIONS 107

It then follows that
M};MR = ug [ul U9 U3]

u?ul ufu2 U,{Ug
— T T

— u2 Ul U2 U2 U2 us
ugul u?uz ’U,g:u?,

Thus,
MEMp =1.

Definition 4.5.1 (Orthogonal Matrix). An n x n matrix, A, is said to be
orthogonal if

ATA =1,
where I denotes the identity matrix in M(n,n).
Thus, an n xn orthogonal matrix is invertible and its inverse is its transpose.

Definition 4.5.2 (Orthogonal Transformations). A linear transformation, R: R" —
R™, is said to be orthogonal if its matrix representation Mpg is orthogonal.

Proposition 4.5.3 (Properties of Orthogonal Transformations (Part I)). Let
R:R™ — R"™ denote an orthogonal transformation. Then,

(i) (R(v), R(w)) = (v, w) for all v,w € R™.

That is, an orthogonal transformation preserve the Euclidean inner prod-
uct.

(i) [[R(w)]| = [lv]l

That is, an orthogonal transformation preserve the Euclidean norm, or
length, of vectors.

Proof of (i): Assume R: R™ — R” is orthogonal. Then, its matrix representa-
tion, Mg, satisfies

MEMp =1,
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where [ is the n x n identity matrix. Thus, for v and w in R",

(Rv, Rw) = (Mgv, Mpw)
= (MRU)TMRw
= UTMgMRU}

= vTTw

= (v,w).
O

The second part of Proposition 4.5.3 is a straightforward consequence of the
first part.

The first part of Proposition 4.5.3 can be interpreted geometrically as saying
that orthogonal transformations preserve angles between vectors.

Example 4.5.4. In this example we see the connection of Euclidean inner
product of two vectors and the angle between the vectors. We consider the
situation in the zy—plane. Let u denote a unit vector in R? and suppose that u
makes an angle of ¢ with the positive z—axis; that is ¢ is the angle between u
and e; (see Figure 4.5.9 ). We then have that

Y

el T

Figure 4.5.9: Angle between u and e;
()
sin

(e1,u) = cos .

since |Ju|| = 1. Consequently,

That is, the inner product of the unit vectors e; and w is the cosine of the angle
between them.

Next, consider two unit vectors, u; and ue, whose angle is ¢ pictured in
Figure 4.5.10.
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Y
U2

Figure 4.5.10: Angle between u; and us

Let 6 denote the angle that u; in Figure 4.5.10 makes with the positive z—
axis. Apply a rotation around the origin through an angle 6 in the clockwise
sense. This is the linear function R_g: R? — R? whose matrix representation is

cosf sinf
My,_, = (— sinf  cos 0) '
Observe that M, , is an orthogonal matrix. The result of applying the rotation
R_y then yields situation like the one picture in Figure 4.5.11. Observe that

Y

Figure 4.5.11: Angle between R_gy(u;) and R_g(uy)

R_y(u1) = €. Thus, since R_y is orthogonal,

(ur,uz) = (R_p(u1), R—g(u2))
(e1, Rg(u2))

= cos¢.

To see why the last equality it true, assume that the vectors u; and us and the
angles 6 and ¢ are as pictured in Figure 4.5.10. Then, it is the case that

_ [cos(@+¢)\ _ (cosBcosy —sinfsing
27 \sin(0+¢)) ~ \sinfcosy + cosfsing )’

which we can write in matrix form as

__(cos® —sinf\ [cosyp _p, [(cos®
Y27 \sin®  cosd ) \sinp/) = " \sing )’
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from which we get that
_ [cose
Rguz = (sin gp) ’

(u1,usz) = cos g;

It then follows that

that is, the Euclidean inner product of the unit vectors u; and us is the cosine
of the angle between them.

The second part of Proposition 4.5.3 says that orthogonal transformations
preserve lengths. Thus, orthogonal transformations preserve angles and lengths.
It is reasonable, therefore, to expect that orthogonal transformations preserve
areas and volumes of parallelograms and parallelepipeds, respectively. We will
see why this is the case in the next section.

4.6 Areas, Volumes and Orientation

4.6.1 Areas of Parallelograms

Two linearly independent vectors, v and w, in R™ determine a parallelogram
Pv,w)={tv+sw|0<t<1, 0<s <1}

We would like to compute the area of P(v,w). Figure 4.6.12 shows P(v,w) for

the special situation in which v and w lie in the first quadrant in the zy—plane.
R? We can see from the picture in Figure 4.6.12 that the area of P(v, w) is given

Yy
d Ty
c + h
v
Py (w)
'b clz T

Figure 4.6.12: Parallelogram P(v,w) in the xy—plane

by
area(P(v,w)) = ||v||h, (4.12)
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where h is the distance from the point determined by w to the line spanned by
v. In order to compute h, let u denote a unit vector in the direction of v; that
is,

U= 7—0. (4.13)
[[o]]

Recall that the orthogonal projection of w onto the direction of u,

P, (w) = (w,u)u, (4.14)
gives the point on the line spanned by w which is closest to w. We then see that
the norm of the vector w — P, (w) is the shortest distance from w to the line
spanned by v. Consequently, h = |w — P, (w)]|. Substituting this expression for
h into the expression for area(P(v,w)) in Equation (4.12) and squaring both
sides of the equation then yields

(area(P(v,w)))* = [Jv[I*[lw — Pu(w)]?
= |ll*(w — Py(w),w — Py(w))

= [ulP(lwll* = 20w, Pu(w)) + || Pu(w)|*)

= o (ol 2 {w, Y <Ulfﬁ22>

= ol (ol - 28 oy + )

[[o]? ]|

(R

[l lol?

= [olPwl® = (v, w)?,
where we have used the properties of the Euclidean inner product, the definition

of P,(w) in (4.14), and the fact that u is the unit vector given in (4.13). We
have therefore shown that

(area(P(v,w)))* = [[v]*[lw]* — (v, w)?. (4.15)

4.6.2 Determinant of 2 x 2 matrices

Applying formula (4.15) to the case in which the vectors v and w lie in R? and

have coordinates
a b
(&) ma (3):
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respectively, we can write (4.15) as
(area(P(v,w)))* = [l[*[w]?* = (v w)?
= (@®+)(V +d*) — (ab+ cd)?
= a®V? 4 a®d® + Pb? + Pd? — (a®V? + 2abed + *d?)
= a*d* + c*b? — 2adbe
= (ad)?® — 2(ad)(bc) + (bc)?
= (ad — bc).
Taking square roots on both sides we then have that
area(P(v,w)) = |ad — bc|. (4.16)

Definition 4.6.1 (Determinant of a 2 x 2 matrix). The expression ad — bc in
(4.16) is called the determinant of the 2 x 2 matrix

A= (‘; Z) .
We denote the determinant of A by det(A) or |A]. We then have that
det(A) = ad — be,
or
’ ch 2 ‘ =ad — be.

Thus, the expression in (4.16) for the area of the parallelogram, P(v,w),
determined by the vectors v and W in R? can be written as

area(P(v,w)) = |det([v w])|; (4.17)

that is, the area of P(v,w) is the absolute value of the determinant of the 2 x 2
matrix, [ v w ], whose columns are the vectors v and w.

The following properties of the determinant for a 2 x 2 matrices can be easily
verified.

Proposition 4.6.2 (Properties of determinants of 2 x 2 matrices). Let A denote
a 2 x 2 matrix, v, vi,v2, w € R? and ¢ denote a scalar. Then,

(i) det(I) = 1, where I denotes the 2 x 2 identity matrix.

(i) det(AT) = det(A), where AT denotes the transpose of A.
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(iii) det([v w]) = —det([w wv]); that is, switch the columns of A once
changes the sign of the determinant of A.

(iv) If the columns of A are linearly dependent, then det(A) = 0. Conversely,
if det(A) = 0, then the columns of A are linearly dependent.

(v) det([cv w])=-cdet([v w]).
(vi) det([vi+v2 w])=det([vi w])+det([va w]).
(vii) det([v cv4+w])=det([v w]).
(viii) det(A) # 0 if an only if A is invertible.
(ix) det(A) = 0 if and only if A is singular; that is, det(A4) = 0 if and only if

the equation Az = 0 has nontrivial solutions.

Definition 4.6.3 (Determinant of a linear function in R?). The determinant of
a linear function, T': R? — R2, is the determinant of its matrix representation
relative to the standard basis in R?; that is,

det(T) = det(Mr).
Example 4.6.4. The determinant of the rotation, Ry: RZ — R2, is

cosf) —sinf

det(Ry) = sin 6 cos

‘:cos20+sin29:1.

Example 4.6.5. Let T: R? — R? denote reflection across the y—axis. Then,
()-(7)
y y)’
-1 0
= (o V)

det(T) = —1.

so that

Thus,

Observe that the transformations Ry and T in the previous two examples
are orthogonal; therefore, it is not surprising that they they preserve areas of
parallelogram. In fact, given an orthogonal transformation, R: R? — R2, the
area of the transformed parallelogram P(R(v), R(w)) can be computed using
(4.15) as follows

(area(P(R(v), R(w))))? [R@)IP[Rw)[* = (R(v), R(w))?

[l w]? = (v, w)?

= (area(P(v,w)))?,
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where we have used Proposition 4.5.3. It then follows that
area(P(R(v), R(w))) = area(P (v, w)); (4.18)

that is, orthogonal transformations preserve areas of parallelograms.

We can use (4.17) to write (4.18) in terms of the determinant of an orthogonal
transformation from R? to R?; in fact, applying (4.18) to the unit parallelogram
P(e1,e3) in R? we obtain that

|det([ R(e1) R(ez) ])| = |det(I)| = 1.
It then follows that, for any orthogonal transformation, R: R? — R2,
|det(R)| = 1.

Thus, there are two possibilities for the determinant of an orthogonal transfor-
mation, either 1 or —1. Examples 4.6.4 and 4.6.5 show these two possibilities
for the case of a rotation and a reflection, respectively. It turns out the sign
of the determinant is what distinguishes rotations from reflections. The deter-
minant of a rotation is 1, while that of a reflection is —1. We will see that a
positive determinant implies that the transformation preserves “orientation,”
while a negative determinant implies that it reverses “orientation.” In order to
see this, we first need to define the term “orientation.” This will be done after
we have defined the determinant of an n x n matrix for n > 3. However, before
we do that, we will first define a special products of vectors in R3 known as the
cross product and the triple scalar product in the next section. In the next
section we deal with the simpler task of defining orientation in R2.

4.6.3 Orientation in R?
Given an ordered basis, B = {v1, vz}, we say that B has a positive orientation if
det([ V1 U2 ]) > 0.

If det([v1 w2 ]) < 0, we say that B has a negative orientation. For example,
the standard, ordered basis, & = {e1, 2}, in R? has a positive orientation since

det([er ez ])=det(I)=1>0.
On the other hand, the ordered basis B = {ez, e1} has a negative orientation.

Definition 4.6.6 (Orientation Preserving Transformation in R?). A linear
transformation 7: R? — R? is said to be orientation preserving if

det(T") > 0;

that is, if
det([ T(e1) T(e2)]) > 0.
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Example 4.6.7 (Orientation Preserving Orthogonal, Transformations in R?).
In this example we see that an orthogonal transformation, R: R? — R?, which
preserves orientation must be a rotation around the origin.

b . . .
Let Mg = ( z d ) denote the matrix representation for for R relative to

the standard basis in R?. Then, since R is orthogonal, Mgl = ML, where
_ 1 d —b d —b
M5t = =
R det(R) (C a ) (c a ) ’
since det(R) = 1, and
T a c
ME = ( ‘ d) |

It then follows that a = d and b = —c. We then have that the matrix represen-
tation of R relative to the standard basis in R? must be of the form

a —C
MR_(C (1,)’

A+ =1.

where

Setting sinf = ¢ and cos @ = a, we then see that R = Ry; that is, R is rotation
around the origin by 6. If ¢ > 0, we set § = arccos(a), which is an angle between
0 and 7, and so R is a rotation in the counterclockwise sense. On the other
hand, if ¢ < 0, we set § = — arccos(a), and so R is a rotation in the clockwise
sense. If ¢ = 0, R is the identity for a = 1, or R is rotation by 7 for a = —1.

4.6.4 The Cross—Product

Given two linearly independent vectors, v and w, in R3, we would like to asso-
ciate to them a vector, denoted v x w and called the cross product of v and w,
satisfying the following properties:

e v X w is orthogonal to the plane spanned by v and w.

e There are two choices for a perpendicular direction to the span of v and
w. The direction for v x w is determined according to the so called “right—
hand rule”:

With the fingers of your right hand, follow the direction of v
while curling them towards the direction of w. The thumb will
point in the direction of v X w.

e The norm of v X w is the area of the parallelogram, P(v,w), determined
by the vectors v and w.
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Example 4.6.8. Suppose that v and w lie in the zy—plane and write

b
v=| ¢ and w= | d
0 0
Then,
vxw=|" Z es. (4.19)

Observe that ej3 is orthogonal to the zy—plane and therefore v x w is orthogonal
to the plane spanned by v and w. Furthermore, for v X w given by (4.19),

lv x w|| = |ad — be| = area(P (v, w)),

by the calculations leading to (4.16). Finally, to check that (4.19) gives the
correct direction for v X w, according to the right—hand rule, observe that, for
v =e; and w = ey, the formula in (4.19) yields

er1 X ex= e3, (4.20)
which is in agreement with the right-hand rule as shown in Figure 4.6.13

z

€3

€1 €2

Figure 4.6.13: Right-hand Rule
Using the illustration in Figure 4.6.13 we also get that cross—product rela-
tions for the vectors in the standard basis in R?:
e1 X ez = —ea, (4.21)

and
s X e3= ey. (4.22)
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Observe that, from the definition in (4.19),

Y — b a _ _|a b o x
wxv=|, | e= ¢ 4| 6= vXxw
Thus, the anti—symmetry relation,
WXV=—0Xw, (4.23)

is inherent in the definition of v x w given so far. Observe that (4.23) implies
that
vxv=0 forall veR3 (4.24)

To complete the definition of the cross product in R3, we require that it be
bi-linear; that is, v X w is linear in both variables v and w; that is,

(c1v1 4 covg) X W = 11 X W + vy X W, (4.25)

and
v X (dywy + dows) = d1v X w1 + dav X wa, (4.26)

for all vectors v, va, v3, w, wi and ws in R3 and all scalars ¢, ¢a, di and da.

The relations in (4.20), (4.21 and (4.22) for the cross products of the vectors
in the standard basis in R?, the anti-symmetry relation in (4.23) and the bi-
linearity relations in (4.25) and (4.26) can be used to define the cross product
in R3 as follows: Given vectors

ay by
v=| a1 and w= 1| by |,
ar b3

write then in terms of the standard basis in R3,

v = aie; + azex + azes,
w = b1€1 +b262 +b363.
Then,
vXw = (a1€1 + ases + CL363) X (b1€1 + baes + bgeg)

= a1by e1 X eg+arbs e1 X e3+asby e X e
+a2b3 ey X e3+ (13[)1 ez X e] + a3b2 ez X eg,

where we have used the bi-linearity relations and (4.24). Thus, using the rela-
tions in (4.20), (4.21 and (4.22), we get that

vXw = aiby e3 —aibs es —asby e3 + asbs e; + azby es — asbs eq,
which we could re-arrange as

vxw = (azbs—asgby) er — (a1bs — azby) ez + (arby — azby) es.
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We can write this vector product in terms of the determinants of the 2 x 2

matrices
as by a1 b ar b
(b)) (5 00)
as follows
as bo ar b ar by
VX W= 4 bs e1 as b3 e + 4y by es (4.27)

We take (4.27) as our definition of the cross product of the vectors

ay by
v= | a1 and w= 1 by
ay b3

in R3.
We presently verify that the cross product, v x w, satisfies the required
properties stated at the beginning of this section. Specifically, we verify that

e v X w is orthogonal to the plane spanned by v and w;

and

e the norm of v x w is the area of the parallelogram, P(v,w), determined
by the vectors v and w.

First, we verify that v X w is orthogonal to v by computing

az b
as bz

(v,oxw) = @

= al(a2b3 - a3b2) - az(alb:s - a3bl) + as(ale - azbl)
= 0.

Similarly, we can compute (w,v x w) = 0. Therefore, v X w is orthogonal to
both v and w.

Calculations involving the definition of the Euclidean inner product and
norm can be used to show that, if v X w is given by (4.27), then

lv > wlf* = ol *[lw]* — (v, w).
which, by virtue of (4.15) shows that
|lv x w|| = area(P (v, w)).

Thus, the norm of v x w is the area of the parallelogram, P(v,w), determined
by the vectors v and w.
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4.6.5 The Triple—Scalar Product

Given vectors u, v and w in R3, whose coordinates relative to the standard basis
in R3 are

C1 a1 b1
u=|ca], v={as and w=|bs ],
c3 as b3

respectively, we define the triple scalar product of u, v and w to be

_ az by _ ay 1 ar b
(u,v X Wy =1 a5 by 2 by +c3 a3 bl (4.28)
n=vXuw

A

u

h /

w V
—

Figure 4.6.14: Volume of Parallelepiped

Geometrically, the absolute value of the triple scalar product (u, v X w) is the
volume of the parallelepiped generated by the vectors u, v and w. To see why
this is so, denote by P(v,w,u) the parallelepiped spanned by v, w, and u, and
by P(v,w) the parallelogram spanned by v and w. Observe that the volume
of the parallelepiped drawn in Figure 4.6.14 is the area of the parallelogram
spanned by v and w times the height, h, of the parallelepiped:

volume(P (v, w, u)) = area(P(v,w)) - h, (4.29)

where h can be obtained by projecting u onto the cross—product, v X w, of v
and w; that is

(u,n)
h= P = | ,
([m[|?
where
n=uvXxuw.
We then have that
[(u,v X w)]|
h=——"———".
[[v > wll

Consequently, since area(P(v,w)) = ||v x w||, we get from (4.29) that

volume(P (v, w,u)) = |{u,v x w)|. (4.30)
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4.6.6 Determinant of 3 x 3 matrices

We can use the triple scalar product of vectors in R® to define the determinant
of a 3 x 3 matrix, A, as follows:

Definition 4.6.9 (Determinant of a 3 x 3 matrix). Write the matrix A in terms
of its columns,
A = [ (%1 V2 V3 ],

where vy, vo and vz are vectors in R3. We define det(A) to be the triple scalar
product of vy, vo and v3, in that order; that is,

det(A) = (v1,v2 X v3). (4.31)
Thus, for A given by

a1 a2 ais
A= |an a2 ax )
a31 asz ass

using (4.31) and the definition of the triple scalar product in (4.28), we obtain
the formula

a2 ais
a32

a22 A23
a3z2 Aass

ai2 ais

det(A) = ail aos a3

— a1 + asi (4.32)

Using the expression in (4.30) for the volume of a parallelepiped and (4.31)
we then obtain that

volume(P (v, va,v3)) = |det([v1 ve w3 ])|; (4.33)

that is, the volume of P(vq,vs,v3) is the absolute value of the determinant of
the 3 x 3 matrix, [v; w2 w3 |, whose columns are the vectors vy, vy and v3.

Using the definition of the determinant of a 3 x 3 matrix as a triple scalar
product, or that given in (4.32), we can can derive the following properties for
the determinant of 3 x 3 matrices,

Proposition 4.6.10 (Properties of determinant of 3x 3 matrices). Let A denote
a 3 x 3 matrix, u, ui, us,v,w € R? and ¢ denote a scalar. Then,

(i) det(I) =1, where I denotes the 3 x 3 identity matrix.

(i) det(AT) = det(A), where AT denotes the transpose of A.

(i) det([v u w])=—det([u v w]),det([w v u])=—-det([u v w])

anddet([u w v])=—det([u v w]);thatis, swapping two columns
of A once changes the sign of the determinant of A.

(iv) If the columns of A are linearly dependent, then det(A4) = 0. Conversely,
if det(A) = 0, then the columns of A are linearly dependent.
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(v) det([cu v w])=cdet([u v w]l)det([u cv w])=cdet([u v w]);

anddet([u v cw])=c-det([u v w]).

(vi) det([ur +ue v w])=det([ur v w])+det((us v wl);
det([u vi+vy w])=det([u v1 w])+det([u ve2 w]);and
det([u v wi+wy])=det([u v wi])+det([u v ws]).

det([u v cutw])=det([u v w]).

(
(
(
(vii) de E[ cu+v w])=det([u v w])and
(viii) det(A) # 0 if an only if A is invertible.

(4

(ix) det(A) = 0 if and only if A is singular; that is, det(A) = 0 if and only if
the equation Az = 0 has nontrivial solutions.

Remark 4.6.11. These properties can be derived from the definition of the
determinant of A € M(3,3) as the triple-scalar product of the columns of A
(see the formulas in (4.31) and (4.28)), or the formula for det(A4) in (4.32), and
the interpretation of |det(A)| as the volume of the parallelepiped generated by
the columns of A (see (4.30)). For instance, to prove part (ii) of Proposition
4.6.10, write

ap b
A= a9 bg Co
as bg C3

Then, using the definition of det(A) in (4.31) and (4.28), we have that

o b2 Co b1 C1 bl C1
det(A) = a1 b3 cs — a b3 c3 + as bg o
by b
= a1| > | —aa(bics —bzer) + az(bica — bacy)
Co C3
by b
= a| > |- asbics + agbscy + asbicy — azbacy
Co C3
by b
= a 2 31— asbics + asbica + asbsc; — asbacy
C2 C3
by b
= a 2 7 bi(azcs — agca) + c1(azbs — asby)
Coy C3
_ by b3 ag az as
= o Cy C3 N bl C2 C3 Ta bQ bg

a; a2 ag
= det bl b2 b3 s
1 C2 C3
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where we have used again the definition of the determinant in (4.32). Observe
that the matrix

ap a2 as

bi by b3

€1 C2 C3

is the transpose of A, and therefore part (ii) of Proposition 4.6.10 follows

Definition 4.6.12 (Triangular Matrices). A 3 x 3 matrix, A = [a;;], is said
to be upper triangular if a;; = 0 for ¢ > j. A = [a;], is said to be lower
triangular if a;; = 0 for ¢ < j.

Proposition 4.6.13 (Determinants of 3 x 3 triangular matrices). Let A = [a,;]
be 3 x 3 upper triangular or lower triangular matrix. Then,

det(A) = Qi1 * a2 * A33.

Proof: Assume that A is upper triangular; so that
ail  aiz2 413
A= 0 az as

0 0 ass

Then, using the definition of det(A) in (4.32),

a1z ais
a2 0

a1z ais
0 ass

a2 A23

det(A) = dall 0 a33

—0- +0- = a11 - G22 - a33,

which was to be shown.

If A is upper triangular, then A7 is lower triangular; then, the result just
proved and part (ii) of Proposition 4.6.10 imply that det(A) = det(AT) =
a1y - ag - a33. O

Definition 4.6.14 (Determinant of a linear function in R?®). The determinant
of a linear function, T: R? — R3, is the determinant of its matrix representation
relative to the standard basis in R?; that is,

det(T') = det(Mr).

Example 4.6.15. Let R: R?> — R? denote the transformation obtained in
Example 4.6.15 as the composition of two rotations: R = R, , 0 R, 9. We saw
in Example 4.6.15 that

cospcosf) —cospsinf —singp
Mp = sin 0 cos 6 0 . (4.34)
sinpcosf —sinpsinf  cosy
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We compute det(Mp) using the formula for the triple scalar product in (4.28)
to get

cos 6 0
det(Mgr) = cospcosf _sinpsing  cosy ’
+cospsing| . sin 6 0
sinpcosf  cosy
_sin sin 0 cos 6
v sinpcosf —sinpsinf

= cos? pcos? O + cos? psin® § 4 sin p(sin psin? 0 + sin @ cos? 6)
= cos?p+sin?yp
= 1

It the follows that det(R) = 1.

In what remains of this section, we will prove the following important prop-
erty of the determinant function:

Proposition 4.6.16. Let A and B denote 3 x 3 matrices. Then,
det(AB) = det(A) det(B). (4.35)
As an application of Proposition 4.6.16, we prove the following
Proposition 4.6.17. For any scalar ¢ and any 3 x 3 matrix B
det(cB) = ¢® det(B).
Proof: We first prove the result for the 3 x 3 identity matrix; namely,
det(cl) = ¢,

which follows from Proposition 4.6.13 because

cl =

S OO
S o O
o O O

is a triangular matrix.
Next, apply Proposition 4.6.16 with A = ¢l to get

det(cB) = det[(cI)B] = det(cI) det(B) = ¢ det(B).
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The proof of Proposition 4.6.16 will proceed by stages. We will prove first
the case in which A is singular and then prove the case in which A is nonsingular.
The case in which A is nonsingular will also proceed by stages by first considering
the case in which A is an elementary matrix.

Proposition 4.6.18. Let A and B be 3 x 3 matrices. If A is singular, then
det(AB) =0, (4.36)
for any 3 x 3 matrix B.

Proof: Assume that A is a 3 x 3 singular matrix. The proof of (4.36) will
follow from part (ix) of Proposition 4.6.10 once we establish the fact that A is
singular implies that AB is singular for any 3 x 3 matrix B. Assume, by way
of contradiction that AB is nonsingular; it then follows that (AB)T = BT AT
is nonsingular. Since we are assuming that A is singular, we obtain from parts
(ii) and (ix) of Proposition 4.6.10 that AT is singular; so, there exists v € R3,
v # 0, such that
ATy =0,
thus,
BTATy =0, forv+#0,

which shows that BT AT is singular. This is a contradiction; hence, AB is
singular if A is singular, and (4.36) follows. O

Lemma 4.6.19. Let B be a 3 x 3 matrix and E an elementary 3 x 3 matrix.
Then
det(EB) = det(F) det(B). (4.37)

Proof: There are three kinds of elementary matrices: (i) those obtained from
the 3 x 3 identity matrix by interchanging two rows; for example,

E, = (4.38)

O = O
O O =
= o O

(ii) those obtain from the 3 x 3 identity matrix by multiplying a row by a
constant c¢; for example,

1 00

E2 =0 ¢ O

0 0 1

; (4.39)

and (iii) those obtained from the 3 x 3 identity matrix by adding a multiple of
one row to another row and putting the result in the latter row; for example,

100
Es=|c 1 0]. (4.40)
00 1
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Next, we compute the determinants of the matrices Fq, Fy and E3 in (4.38),
(4.39) and (4.40), respectively.
Note that Fy =[ez e1 es]; so that, by part (iii) of Proposition 4.6.10,

det(Ey) = —det([ex e2 eg]=-—1. (4.41)

Since matrices Fy and Es3 are triangular matrices, we can use Proposition 4.6.13
to compute

det(E2) = ¢, (4.42)
and
det(Es5) = 1. (4.43)
Ry
Write B = | R2 |, where R; € M(1,3), for ¢ = 1,2, 3, are the rows of B.
R
Then,
Ry
EiB=|R|;
Rs
so that
(E1B)" =[R] R R{J;
Thus,
det((E1B)T) = —det((RT R RI)), (1.44)

where we have used part (iii) of Proposition 4.6.10. It follows from (4.44) and
part (ii) of Proposition 4.6.10 that

det(E, B) = — det(B). (4.45)

Combining (4.45) and (4.41) then yields

det(E1 B) = det(E7) det(B). (4.46)
Next, note that
Ry
BB = |cRy | :
R3

thus, (E2B)T = [RT c¢RY RI] and, using part (v) of Proposition 4.6.10,
det[(E2B)T] = cdet[Rf R} RI] = cdet(BT).
Hence, by virtue of part (ii) of Proposition 4.6.10,
det(EyB) = cdet(B). (4.47)
Combining (4.42) and (4.47) we get

det(EyB) = det(F5) det(B). (4.48)
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Next, observe that

Ry
EsB=|cRi+Rs|;
R3
so that
(BsB)" = [RT cRT + RY RY). (4.49)

Applying part (vii) of Proposition 4.6.10 to (4.49) we have
det[(EsB)"] = det[RT cRT +RY RI]

det[R] R R{J;

so that
det[(E3B)T] = det(BT);

thus, by virtue of part (ii) of Proposition 4.6.10,
det(E3B) = det(B). (4.50)
In view of (4.43) and (4.50) we see that
det(FE3B) = det(E3) det(B). (4.51)

Finally, note that (4.46), (4.48) and (4.51) are instances of (4.37) for the
three classes of elementary 3 x 3 matrices. We have therefore established Lemma
4.6.19. O

Proposition 4.6.20. Let B be a 3 x 3 matrix and A an invertible 3 x 3 matrix.
Then
det(AB) = det(A) det(B). (4.52)

Proof: Let A and B denote 3 x 3 matrices and assume that A is invertible. It
then follows from Proposition 3.3.21 that

A= E\E,--Ey, (4.53)

for elementary 3 x 3 matrices E1, Fs ..., Ej.
Applying Lemma 4.6.19 to (4.54) successively we obtain

det(A) = det(Ey) det(Es) - - - det(Ey). (4.54)

Next, write
AB = FE1FEy--- EpxB, (4.55)

and apply Lemma 4.6.19 to (4.55) successively we obtain
det(AB) = det(Ey) det(Es) - - - det(Ey,) det(B). (4.56)

Finally, combine (4.54) and (4.56) to obtain (4.52). O
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We end this section with the proof of Proposition 4.6.16.

Proof of Proposition 4.6.16: Let A and B be 3 x 3 matrices. Assume that A is
singular. It then follows from part (ix) of Proposition 4.6.10 that

det(A4) =0,
and from Proposition 4.6.18 that
det(AB) = 0.
Consequently,
det(AB) = det(A) det(B),

and (4.35) is established in this case.
On the other hand, if A is nonsingular, (4.35) follows from Proposition 4.6.20.
The proof of Proposition 4.6.16 is now complete. O

4.6.7 Orientation in R3

It is not surprising that |det(R)| = 1 in the Example 4.6.15, since R is an
orthogonal transformation and therefore it preserves angles between vectors
and lengths. The fact that det(R) > 0 will then imply that R also preserves
orientation. Given an ordered basis B = {v1,v2,v3} of R?, we say that B has a
positive orientation if

(v1,v2 X v3) > 0.

If (v1,v2 x v3) < 0, we say that B has a negative orientation. We say that a
transformation T': R® — R3 preserves orientation if det(T) > 0. If det(T") < 0,
we say that T' reverses orientation.

Example 4.6.21. Let T: R? — R3 denote reflection on the zy—plane; that is,

T T
Ty |=1 v [,
z —z
or
T 1 0 0 T
Ty = 0 1 0 Y
z 0 0 -1 z
Thus,
1 0 0
My = 0 1 0
0 0 -1

and, therefore, det(7T") = det(Mr) = —1 < 0. Hence, T reverses orientation.

In the next chapter we will prove that any orthogonal transformation from
R3 to R? which preserves orientation must be a rotation. This will complete
the solution to the problem that we stated at the beginning of these notes.
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Chapter 5

The Eigenvalue Problem

We have seen in the previous chapter that a rotation in R3 can be modeled by
an orthogonal transformation from R? to R? which also preserves orientation.
It is not hard to see that compositions of orthogonal, orientation preserving
transformations are also orthogonal and orientation preserving. Thus, a partial
solution to the motivating problem stated at the start of these notes, and re—
stated as Problem 4.0.8 on page 91, will be attained if we can show that for any
orientation preserving, orthogonal transformation,

R: R® = R?,
there exists a nonzero vector v € R? such that
R(v) = v;

that is, R fixes the line spanned by v. This would correspond to the axis of
rotation of the transformation.

Given a linear transformation, 7: R® — R™, a scalar, A, for which the
equation

T(v) =M

has a nontrivial solution, v, is called an eigenvalue of the transformation T,
and a nontrivial solution of T'(v) = Av is called an eigenvector corresponding
to the eigenvalue A. Thus, in order to solve Problem 4.0.8, we will have to show
that any orientation preserving, orthogonal transformation from R? to R? must
have the scalar 1 as an eigenvalue.

We begin our discussion of the eigenvalue problem by presenting the example
of characterizing all orthogonal, orientation reversing transformations in R2.

5.1 Orientation reversing, orthogonal transfor-
mations in R?

This section is a follow—up to Example 4.6.6. In that example, we proved that
any orientation preserving, orthogonal transformation in R? must be a rota-

129
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tion. In what follows we will prove that any orientation reversing, orthogonal
transformation in R? must be a reflection.
Assume that R: R? — R? is an orthogonal transformation with

det(R) = —1. (5.1)

b . . .
Let Mg = ( CCL d ) denote the matrix representation for for R relative to the
standard basis in R2. Then, since R is orthogonal,

Mp' = Mg, (5.2)

g ()= (0 a) e

since det(R) = —1. We also note that

M};:(‘; 2) (5.4)

It then follows from (5.2)—(5.4) that d = —a and b = ¢. We then have that the
matrix representation of R relative to the standard basis in R? must be of the

form
a b
MR—< b —a>’ (5.5)

a?+ b =1. (5.6)

We claim that there exist nonzero vectors, v; and vo, in R? such that

where

where

MR’Ul =1

and
MRUQ = —7V2

Definition 5.1.1 (Eigenvalues and Eigenvectors). Let T: R™ — R™ be a linear
transformation. A scalar, A, is said to be an eigenvalue of T if and only if the
equation
T(v) = v (5.7)

has a nontrivial solution.

A nontrivial solution, v, of the equation T'(v) = Av is called an eigenvector
corresponding to the eigenvalue A.

Observe that the equation in (5.7) can also be written as

(T — M)v =0, (5.8)

where I: R™ — R™ denotes the identity transformation in R™. Thus, A is an
eigenvalue of T if and only if the null space of the linear transformation 7" — AT
is nontrivial; that is Np_,; # {0}. The null space of T — AI is called the
eigenspace of T corresponding to A and is denoted by Ep(\).
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Thus, according to Definition 5.1.1, we wish to prove that the linear function
R: R? — R?, whose matrix representation, Mg, is given by (5.5) has eigenvalues
A1 =1 and Ay = —1. This will prove that R is a reflection on the line given by
Eg(1). To see why this is the case, we will show that eigenspace corresponding
to Ay = —1 is a line orthogonal to Er(1) which gets reflected across the line
ERr(1) (see the picture in Figure 5.1.1).

b2 Er(1)

U1

R(v2)

Figure 5.1.1: Reflection in R?

In order to find eigenvalues of R, we look for values of A for which the system
(Mp—-X)v=0 (5.9)

has nontrivial solutions, where Mg is the matrix given in (5.5) and I is the
2 x 2 identity matrix. Now the system in (5.9) has nontrivial solutions when
the columns of the matrix

a—A b
MR_”_( b —a—/\)

are linearly dependent, which occurs if and only if the determinant of Mp — AT
is 0; that is, A is an eigenvalue of R if and only if

A+a)A—a)—b*=0

or

N —1=0,

since a? + b?> = 1. We then get that A\; = 1 and Ay = —1 are eigenvalues of R,
which was to be shown.
In order to find the eigenspace corresponding to A; = 1, we solve the homo-

geneous system
a—1 b x 0
(" =) 6)-6) 629
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In order to solve (5.10), we first consider the case b = 0. Then, from a?+b% = 1,
we get that a® = 1, so that a = 1 or a = —1. If a = 1, the system in (5.10) is

equivalent to the system
0 o0 z\ (0
0 -2 y ) \0 /)’

which is equivalent to the equation y = 0. Thus, setting x = ¢, where ¢ is
arbitrary we get that the solution space of (5.10) for the case b =0 and a = 1

is given by 1
()=:(o)
ER<1>=span{(é)}7

or the z—axis. Thus, in this case R is reflection across the r—axis. Similarly, if
b=0and a = —1, we get from the system in (5.10) that

By {(2)),

so that, in this case, R is reflection across the y—axis.
Next, assume that b # 0 and perform Gaussian elimination on the system
in (5.10) to the get the system

(1 i) () (0), o

where we have used a? + b2 = 1.
Observe that the system in (5.11) is equivalent to the equation

so that

7a+1
b

y= 07
which has solutions space given by
()= (")
Y b
where t is arbitrary. We therefore get that the eigenspace of R corresponding

foA=11is
Eg(1) = span {( “ 1 >} . (5.12)

Next, we solve the system in (5.9) for A = —1, which is the same as

(Hbl —af)Fl)(;):(g) (5.13)
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A calculation similar to the one leading to (5.12) can be used to show that, for
the case b # 0, the eigenspace corresponding to A = —1 is

Er(~1) :span{( agl )} (5.14)

Thus, we have shown that
_f(a+1
v = b

is an eigenvector corresponding to A\; = 1 and

()

is an eigenvector corresponding to Ao = —1. That is,
R(’Ul) =1
and
R(vg) = —vs.

Furthermore, v; and vy are orthogonal; to see why this is so, compute
(v1,v9) = (a+1)(a—1) +b* =a* — 1+ b* =0,

since a?+b? = 1. Thus, R is indeed a reflection across the line Er(1). Note that
R fixes the line Er(1); that is, R(v) = v for all v € Er(1); for, if v € Eg(1),
then

v = cvy,

for some scalar ¢, so that, by the linearity of R,
R(v) = R(cv1) = cR(v1) = cvy = v.

Note that R does not fix Er(—1), given in (5.14). However, it maps Fr(—1)
to itself; that is, R(v) € Eg(—1) for allv € Er(—1). To see this, let v € Er(—1);
then, v = cvy for some scalar, ¢. Then,

R(v) = R(cvs) = cR(v2) = —cvy € span{vs} = Eg(—1).

Definition 5.1.2 (Invariant Subspaces). Let T: R™ — R™ denote a linear trans-
formation. A subspace, W, of R” is said to be invariant under 7 if and only
if

T(w)eW forall we W,

in other words, W is invariant under T iff
TW)CW.

We have seen in this section that, if R: R? — R? is an orthogonal, orientation
reversing transformation, then R has invariant subspaces Er(1) and Er(—1).
The invariant subspace Er(1) is the line of reflection of R. The line Eg(—1) is
orthogonal to Er(1) and is reflected across Er(1) by the transformation R.
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5.2 Orientation preserving, orthogonal transfor-
mations in R3

In this section we solve Problem 4.0.8 on page 91. We will first re-formulate the
problem in the language of linear transformation and the eigenvalue problem.

Theorem 5.2.1. Let R: R? — R? denote an orthogonal transformation which
preserves orientation. We claim that A = 1 is an eigenvalue of R. Furthermore,
if u is a eigenvector corresponding to A = 1 of norm 1, then R is a rotation
around the span of u.

Proof: We first prove that if R: R? — R? is orthogonal and preserves orienta-
tion, then A =1 is an eigenvalue of R. To show this, let Mgz denote the matrix
representation for R relative to the standard basis in R? and assume that

MEMp = MgM} =1, (5.15)
where I denotes the 3 x 3 identity matrix, and
det(Mg) = 1. (5.16)

We prove that the equation
Mgv =

has a nontrivial solution in R3, or equivalently, the homogenous system
(Mr—Iv=0 (5.17)
has nontrivial solutions. This occurs if and only if
det(Mp —1)=0. (5.18)
Observe that
det(Mp —I) = det(Mg— MpM%)
= det(Mg(I — M)
= det(Mg)det((I — M}))
— det((I - M)

where we have used (5.15), the distributive property of matrix multiplication,
Proposition 4.6.16 and (5.16). Thus, using the fact that, for any matrices A and
B of the same dimension, (4 + B)T = AT + BT we get that

det(Mr —I) = det((I — Mg)T)

= det(I - MR),
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by part (ii) of Proposition 4.6.10. It then follows that
det(Mr— 1) = det(—(Mg—1))
= (=1)*det(Mgr —I),
by Proposition 4.6.17. Consequently,
det(Mp — I) = —det(Mp — 1),
from which (5.18) follows, and therefore the homogeneous system in (5.18) has

nontrivial solutions. Hence, A = 1 is an eigenvalue of R.

Next, let u denote an eigenvector of R corresponding to the eigenvalue A = 1;
assume also that ||u|| = 1. Define P,: R® — R? by

P, (v) = (u,v)u for all v € R,

that is, P, is orthogonal projection onto the direction of u. Then, the image of
P, is the span of the vector wu,

Ip, = span{u};
SO

dim(Zp,) = 1. (5.19)
Let W denote the null space of P,. We then have that

W= {weR®| (u,w) = 0};

that is, W is the space of vectors in R?® which are orthogonal to u. By the
Dimension Theorem we then get, in view of (5.19), that

dim(W) = 2.

Thus, W is a two—dimensional subspace in R3; in other words, W is a plane
through the origin in R which is perpendicular to u.

Since, W is two—dimensional, it has a basis, {w;, w2}, which we may assume
consists of unit vectors. We may further assume that w; and wy are orthogonal
to each other. To see why this is the case, let {v1,v2} denote any basis for W.
By multiplying by the reciprocal of their norms, if necessary, we may assume
that [Jv1]| = |lv2|| = 1. Set wy = vy and find a scalar ¢ such that vy + cw; is
orthogonal to wi; in other words,

(vg + cwy,wy) =0,
which yields
C = 7<1)27 w1>.

Finally, set
1

B ||U2 - <’U2,'[U1>U}1H

Wa (Ug — <’U2,’LU1>U)1).
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Then, ws is a unit vector which is orthogonal to ws.
We may also choose w; and ws so that

det([wy we wu])=1. (5.20)

To see why we can do this, observe that, since wi, wy and u are mutually
orthogonal and have length 1,

volume(P (w1, wq,u)) = 1,

so that, by (4.33), |det([ w1 w2 w ])| = 1. We therefore have two possibilities
for det([wy ws w]): 1 or —1. If the determinant of [ w; ws u]=—1, we
may switch the order of w; and ws, and rename them wy and w, respectively
to get (5.20).

Next, we show that W is an invariant subspace of R; that is, we show that
R(W)CW,
or equivalently
R(w) e W for all w € W. (5.21)
To show (5.21), let w € W. Then, (u,w) = 0 and, using the fact that R(u) = u,

(R(w),u) = (R(w), R(u))

since R is orthogonal. Consequently, (R(w),u) = 0, which shows that R(w) is
in W, and (5.21) is established. It then follows that

R(w1) = awy + cws (5.22)
and

R(’wg) = b’LUl + dwg, (523)
for some scalars a, b, ¢ and d, since W = span{w;, wa}.

In what remains of this section we will show that the effect of R on W
is that of rotating it by some angle . To see why this is the case, set B =
{wy,wa,u}. We see by (5.20) that B is a basis for R?; this can also be seen from
the observation that B forms an orthonormal set of three vectors in R3. Thus,
any vector, v, in R? can be expressed as

v = yrw1 + YWz + Ysu, (5.24)
where y1, y1 and ys are the coordinates of v relative to B. Thus,
Y1

W= | 12
Ys
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is the coordinates vector of v relative to B. Applying the linear transformation,
R, on v given in (5.24) we obtain

R(v) = yiR(wi)+y2R(w2) + ysR(u)
y1(awy + cws) + y2(bw + dwz) + yzu
(ayr + by2)wi + (cy1 + dya)w2 + ysu,

where we have used (5.22) and (5.23) and the fact that u is an eigenvector for
R corresponding to the eigenvalue A = 1. We then have that the coordinates of
R(v) relative to B are given by

ay1 + by
[RW)]p= | cyr +dy2 |,
Y3

which may be written as

a b 0 Y1
[R('U)]B = c d 0 Y2 )
0 0 1 Y3
or
a b 0
R)s=| ¢ d 0| []s (5.25)
0 0 1

We claim that the entries a, b, ¢ and d in the matrix in (5.25) satisfy the relations

d = a
b = —c (5.26)
a®+c? = 1.

These relations will imply that (5.25) may be further re-written as

cosf —sinf 0
[R(v)]g = sinf  cosf 0 | [v]g. (5.27)
0 0 1

The expression in (5.27) shows that, when viewed from the frame of reference
provided by the basis B = {wy,ws,u}, R is a rotation around the axis deter-
mined by the eigenvector u through an angle of 6, where 6 is determined by
sinf = ¢ and cosf = a.

In order to prove the relations in (5.26) for the entries a, b, ¢ and d in the
3 x 3 matrix in (5.25), denote it by A; that is, let

b 0
A= d o,
0 1

oo R

where a, b, ¢ and d are determined by (5.22) and (5.23). We claim that
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(i) A is orthogonal, and
(ii) det(A4) =1.
To see why (i) is true, compute

(R(wi), R(wj)) = (wi,wy)

B 1 ifi=y
0 ifi#7j,
for ¢, 7 = 1,2, where we have used the assumption that R is orthogonal and the
fact that w; and wy are mutually orthogonal with norm 1. On the other hand,
using (5.22) and (5.23), we obtain that
(R(w1), R(w1)) = (aw; + cws, aw; + cws)
= a®(wy,w1) + ac(wy, wa) + calwy, wa) + ¢ (wa, ws)
- a2+,

again by the orthonormality of the basis {wq,w2}. It then follows that

a2 =1. (5.28)
Similar calculations show that

V+di=1 (5.29)
and

ab+cd = 0. (5.30)

The relations in (5.28), (5.29) and (5.30) imply that A is orthogonal; in fact,

AT A

I
(SIS TS
oa o

0 b
0 d
1 0

o0 9
= o O

a2+ ab+ed 0O
ab+cd VP+d® 0
0 0 1

(

0
0

O =
— O
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Next, to see that det(A) = 1, let @ denote the matrix [ wy ws
by (5.20),

det(Q) = 1.

It then follows that @ is invertible and that
Q'wi=e1, Q lwy=ey and Q 'u=es,

since

Qe =wi, Qes =wy and Qez = u.

139

u ]. Then,

Consider the matrix @ 'Mz(Q. Observe that the first column of this matrix

is
Q 'MgQe; = Q 'Mpguw
= Q 'R(wr)
= Q Yaw; + cwy)
= aQ twi + cQ twy

= aej + ceg

Similarly, the second and third column of Q' MrQ are

b
Q 'MgQey | d
0
and
0
Q 'MgrQes | 0 |,
1
respectively. We then conclude that
a b 0
Q'MrQ=|c d 0] =4
0 0 1
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We then get that

det(4A) = det(Q 'MgQ)
= det(Q')det(Mg) det(Q)
1
- Q) det(R) det(Q)
= det(R)
= 1.
Observe that
det(A) = a g ?‘—c‘g ?‘—ad—bc.

Consequently, ad — bc = 1. Observe that this implies that

d —-b 0
At=|—- a 0
0 0 1
On the other hand,
a c O
AT=1[b d 0
0 0 1

This, since A is orthogonal, A~! = AT and, therefore, the relations in (5.26)
follow, which we wanted to prove. O

Example 5.2.2. Let R: R? — R3? by a linear transformation obtained by
T
composing a rotation around the z—axis by —3 and rotation around the y—

axis by —g; that is,
R = Rz;g o Ryyg; (5.31)

The rotations R, —z and R, z are shown pictorially in Figure 5.2.2.
The matrix representation for R, _z can be obtained from Figure 5.2.2 to

be

1 0 0
Mg, .=(0 o0 1], (5.32)
: 0 -1 0

since R, —z maps e, ez and e to e;, —e3 and e, respectively. Similarly,

0 -1
Mg .= 0 1 o0]. (5.33)
0 0
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z
€3 Rm,fg
Ry,;/ \
{ €2 Y
€1

Figure 5.2.2: R=R; _z o Ry z.

2

It follows from (5.31), (5.32) and (5.33) that the matrix representation for R
relative to the standard basis is

Mp = Mg, Mg, ,
1 0 0 0 0 -1
= 0 0 1 0 1 0
0 -1 0 1 0 0 (5.34)
0 0 -1
= 1 0 0
0 -1 0

Since Mp is orthogonal (see Problem 1 in Assignment #22) and
det(Mpg) = det(Mg, _,)det(Mgr ,)=1,
T Y.z

it follows from Theorem 5.2.1 that A = 1 is an eigenvalue of R. In order to find
an eigenvector for R corresponding to the eigenvalue A = 1, we solve the system

(Mg —I)v =0, (5.35)

where I denotes the 3 x 3 identity matrix and Mg is the matrix in (5.34). In
order to solve the equation in (5.35) we perform elementary row operations to

the augmented matrix
-1 0 -1 | 0

1 -1 0| 0
0 -1 -1 | 0
to obtain
1 0 110
0 1 110 (5.36)
0 0 0| O
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It follows from the matrix in (5.36) that the equation in (5.35) is equivalent to
the system

ry + x3 = 0
z2t+x3 = 0,
which has solutions
r, =
T2 =
T3 = 7t,
1
for t € R. It then follows that v = 1| is an eigenvector for R corresponding
-1

to the eigenvalue A = 1. According to Theorem 5.2.1, the line span{v} is the axis
of rotation of the orthogonal transformation R. Next, we see how to determine
the angle of rotation around that axis.

Set
1/V3
uw = 1/\/§ , (5.37)
_1/\/§

so that u is a unit vector in the direction of v and, therefore, u is also an
eigenvector for R corresponding to the eigenvalue A = 1.

Let I" denote the plane through the origin in R3 that is orthogonal to u; so
that

I ={weR?®| (u,w) =0}, (5.38)
or
X
F={|y|eR®|z+y—2=0,. (5.39)
z

Then, T is a 2-dimensional subspace of R? that is invariant under the transfor-

mation R; that is,
R(T) CT. (5.40)

The assertion in (5.40) follows from the fact that R is orthogonal. Indeed, if
w €T, it follows from (5.38) that

(u,w) =0, (5.41)

where u is given in (5.37). Now, since u is an eigenvector for R corresponding
to A = 1, we have that
R(u) = u. (5.42)

It follows from (5.41), (5.42) and the fact that R is orthogonal that
(u, R(w)) = (R(u), R(w)) = (u,w) =0,
which shows that R(w) € T'. Thus, we have shown that

wel = R(w) eT,
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which establishes (5.40).
Next, we construct a set {wy, ws} of unit vectors in I" that are also orthogonal

x
to each other. First, we find a vector vy = |y | € I' with z =1 and y = 0;
z
thus, in view of (5.39), z = 1; so that
1
V1 = 0]. (543)
1
We then take
1/v2
w1 = 0 3 (544)
1/v2
that is, w; is a unit vector in the direction of vy in (5.43).
x
Next, we look for a vector v = | y | € I' that is orthogonal to v; in (5.43).
z
It then follows from (5.39) and (5.43) that
r+y—2z = 0
{ z + z = 0. (5.45)
The system in (5.45) can be solved by reducing the augmented matrix
1 1 -1 ] 0
(1) -
to |
1 0 1 0
( 0 1 -2 | 0. > (5.47)

From the equivalence of the matrices in (5.46) and (5.47) it follows that the
system in (5.45) is equivalent to the system

r 4+ z = 0
{ y— 22 = 0. (5.48)

Solving the system in (5.48) yields a solution

1
Vo = —21. (549)
-1
Thus, we can take
1/V6
wy = | —2//6 |, (5.50)

-1/V6
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the unit vector in the direction of vy in (5.49).
The vectors u, wy and wy in (5.37), (5.44) and (5.50), respectively, are
mutually orthogonal unit vectors in R?; hence, the set

B = {u,wy,ws} (5.51)

forms a basis for R? (see Problem 3 in Assignment #12).
Set
Q=[u w ws (5.52)

that is, () is the matrix whose columns are the vectors in the ordered basis B in
(5.51).
Computing the determinant of @ in (5.52) we obtain

1 1 1 1
-1 1 -1
1 1 1 1 1
o1 FEE R |
1
= c[(-2)+202),
so that
det(Q) =1>0,

and therefore the basis B in (5.51) has a positive orientation.
Next, we find the matrix representation of R relative to the ordered basis B
in (5.51).
We have already noted that R(u) = u, so that
Ruy=1-u+0-w; +0-ws,

and therefore, the coordinates of R(u) relative to B are
1
[R(u)lz=1(0]. (5.53)
0
Next, we compute the coordinates of R(w;) and R(wz) relative to B. First,
note that, by virtue of (5.40), we can write

R(w1) = aw; + cws (5.54)

and
R(wg) = bwy + dwo, (555)



5.2. ROTATIONS IN R3 145

for some scalars a, b, ¢ and d, where

R(wl) = MRw1
0 0 -1\ [1/V2
= 1 0 0 0
0 -1 0/ \1/v2 (5.56)
_1/\/5
= 1/\/§ 9
0
and
R(wg) = MR’LUQ
( 0 0 —1) ( 1/\/6)
= 1 0 o0f(-2/v6
0 -1 0/ \-1/v6 (5.57)
1//6
= 1/v6
2//6

Since w; and wy are unit vectors that are orthogonal to each other, we can use
the result of Problem 3 in Assignment #12 to compute the scalars a, b, ¢ and d
in (5.54) and (5.55) to obtain

a = (R(wi),wn)
= R(wy)"wy
1/v2
- (7 7= )
so that 1
a=-3, (5.58)

where we have used the result in (5.56). Similarly,
¢ = (R(wi),ws)

= R(’wl)ng

-

-2/v6 |,

1/V6
0
)

Sl
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so that

V3
5
where we have also used the definition of wsy in (5.50). Putting (5.54), (5.58)
and (5.59) together we obtain the coordinates of R(w;) relative to B to be

C=—

(5.59)

0
[R(w)]z=| —1/2 . (5.60)
_\/§/2

Calculations similar to those leading to (5.60), using the results of (5.57)
and (5.55) can be used to obtain

0
Rwn)ls = [ v3/2]. (5.61)
~1/2

Combining (5.53), (5.60) and (5.61), we get that the matrix representation for
R relative to the basis B is

1 0 0
Rlz=( 0 -1/2 V3)2 (5.62)
0 —V3/2 —1/2
Thus, the matrix representation for R relative to B is of the form
1 0 0
[Rlz=| 0 cosf —sinf |, (5.63)

0 siné cos

where, comparing (5.62) and (5.63), we see that R corresponds to a rotation
around the line spanned by u through an angle # such that

V3

1
cosf = —3 and sinf = 5

Thus, viewed from the frame of reference provided by the vectors u, w; and wq
in B, R is a rotation around the axis generated by the unit vector u through

2
and angle § = —% or —120°.
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