Department of Mathematics
Math 151.  Probability            Spring 2014
Course Outline 
Time and Place:         MWF  9:00 am – 9:50 am           
Seaver North Auditorium
Instructor:                  Dr.
Adolfo J. Rumbos
Office:
                        Mudd Science Library 106
Phone/e-mail:             ext.  18713 / arumbos@pomona.edu
Office Hours:             MWF   11:05 am-11:55 am, TR 9:00 am – 10:00am, 
or by
appointment
Text:                           Probability and Statistics,
by Morris H. DeGroot
and Mark J. Schervish,  Adison Wesley
Course Website:        http://pages.pomona.edu/~ajr04747/
Prerequisites:             Multivariable
Calculus or Vector Calculus, and Linear Algebra.
Course Description.    This course is an
introduction to the theory and applications of Probability; special attention
will be given to applications relevant to statistical inference.  A solid knowledge of multivariable calculus
and linear algebra will be presupposed. 
The course topics are listed in the attached tentative schedule of
lectures and examinations.
Assigned Readings and Problems.   
Grading Policy.   Grades will be based on
the homework, three 50-minute examinations, plus a comprehensive final
examination.  The overall score will be
computed as follows:
                        homework                                                        20%
                        three
50-minute exams                          50%
                        final
examination                                               30%
Final Examination. 
Time:    Wednesday, May 14,
2014        9:00 am.
Place:   Seaver North
Auditorium
Math 151.  Probability                                                                                   Spring 2014
Tentative Schedule of Lectures and
Examinations
 
Date                            Topic
W        Jan  
22            Introduction:  A problem from statistical inference
F          Jan  
24            Sample Spaces
M         Jan   27            σ-fields
W        Jan   29            Probability
function
F          Jan   31            Probability
function (continued)
M         Feb    3            Independent
events
W        Feb    5            Conditional probability
F          Feb   
7            Continuous and
discrete random variables
M         Feb   10           Cumulative
distribution function (cdf)
W        Feb  
12           Probability density
function (pdf)
F          Feb  
14           Probability mass
function (pmf)
M         Feb  17            Continuous random variable and
probability density function (pdf)
W        Feb  19            Review
F          Feb  21            Exam
1
M         Feb  24            Expectation of a random variable
W        Feb  26            Expectation
of a function of a random variable
F          Feb  28   
        Expectation of a function
of a random variable (continued)
M         Mar    3            Moments,
variance and moment generation function
W        Mar   
5            Joint distribution
functions
F          Mar   
7            Joint distribution
functions (continued)   
M         Mar  10            Marginal distributions
W        Mar  12            Independent
random variables
F          Mar  14            Independent
random variables (continued)
M         Mar  17            Spring
Recess
W        Mar  19            Spring Recess
F          Mar  21            Spring Recess
M         Mar  24            Review
W        Mar  26            Exam
2
F          Mar  28            César Chávez Day
Date                            Topic
M         Mar  31            The Poisson Distribution
W        Apr   
2            Limiting distributions
F          Apr   
4            mgf
convergence theorem
M         Apr    7            Convergence
in distribution
W        Apr   
9            Convergence in
Probability  
F          Apr  
11           The
Central Limit Theorem
M         Apr   14           Applications
of the Central Limit Theorem
W        Apr  
16           Applications of the
Central Limit Theorem (continued)
F          Apr  
18           Random samples
M         Apr   21           Sampling
distributions
W        Apr  
23           Estimation
F          Apr  
25           Estimation (continued)
M         Apr   28           Review
W        Apr  
30           Review
F          May  
2            Exam
3            
M         May   5            Review
W        May  
7            Review
W        May  14           Final
Examination