Exam 1 (Part I)

Wednesday, February 18, 2015
Name: \qquad
This is the in-class portion of Exam 1. This is a closed-book and closed-notes exam. Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 50 minutes to work on the following 2 questions. Relax.

1. Let A denote a 2×2 matrix, and consider the linear system of differential equations

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y} . \tag{1}
\end{equation*}
$$

(a) Suppose that v is an eigenvector of A corresponding to an eigenvalue λ. Verify that the function defined by $\binom{x(t)}{y(t)}=e^{\lambda t} \mathrm{v}$, for $t \in \mathbb{R}$, is a solution to the system in (1).
(b) Suppose that v_{1} and v_{2} are an eigenvectors of A corresponding to eigenvalues λ_{1} and λ_{2}, respectively. Verify that the function given by

$$
\binom{x(t)}{y(t)}=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}, \quad \text { for } t \in \mathbb{R}
$$

where c_{1} and c_{2} are arbitrary scalars, is a solution to the system in (1).
(c) Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \lambda_{1}$ and λ_{2} be as in part (b), and assume that v_{1} and v_{2} are linearly independent. Show that we will always be able to construct a solution of the system in (1) satisfying the initial condition: $x(0)=x_{o}$, $y(0)=y_{o}$, for any given values x_{o} and y_{o}. Explain your reasoning.
(d) Sketch the phase portrait of the system in (1) for the specific case in which $\mathrm{v}_{1}=\binom{2}{1}, \quad \mathrm{v}_{2}=\binom{2}{-1}, \quad \lambda_{1}=-1$ and $\lambda_{2}=2$.
2. Consider the first order, linear, non-homogeneous differential equation

$$
\begin{equation*}
\frac{d y}{d t}=-2 y+e^{-t}, \quad \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

(a) Construct solutions to the equation in (2).
(b) Construct a solution to the differential equation in (2) satisfying the initial condition $y(0)=0$.

