Exam 1 (Part I)

Wednesday, February 18, 2015

Name: _

This is the in-class portion of Exam 1. This is a closed-book and closed-notes exam. Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 50 minutes to work on the following 2 questions. Relax.

1. Let A denote a 2×2 matrix, and consider the linear system of differential equations

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}. \tag{1}$$

- (a) Suppose that v is an eigenvector of A corresponding to an eigenvalue λ . Verify that the function defined by $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{\lambda t} v$, for $t \in \mathbb{R}$, is a solution to the system in (1).
- (b) Suppose that v_1 and v_2 are an eigenvectors of A corresponding to eigenvalues λ_1 and λ_2 , respectively. Verify that the function given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2, \quad \text{ for } t \in \mathbb{R},$$

where c_1 and c_2 are arbitrary scalars, is a solution to the system in (1).

- (c) Let v_1 , v_2 , λ_1 and λ_2 be as in part (b), and assume that v_1 and v_2 are linearly independent. Show that we will always be able to construct a solution of the system in (1) satisfying the initial condition: $x(0) = x_o$, $y(0) = y_o$, for any given values x_o and y_o . Explain your reasoning.
- (d) Sketch the phase portrait of the system in (1) for the specific case in which $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda_1 = -1$ and $\lambda_2 = 2$.
- 2. Consider the first order, linear, non-homogeneous differential equation

$$\frac{dy}{dt} = -2y + e^{-t}, \quad \text{for all } t \in \mathbb{R}.$$
 (2)

- (a) Construct solutions to the equation in (2).
- (b) Construct a solution to the differential equation in (2) satisfying the initial condition y(0) = 0.