Assignment #13

Due on Friday, April 10, 2020

Read Section 7.2 on *The Poisson Distribution* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.4 on The Poisson Distribution in DeGroot and Schervish.

Do the following problems

1. We have seen in the lecture that if X has a Poisson distribution with parameter $\lambda > 0$, then it has the pmf:

$$p_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 for $k = 0, 1, 2, 3, ...;$ zero elsewhere.

Use the fact that the power series $\sum_{m=0}^{\infty} \frac{x^m}{m!}$ converges to e^x for all real values of x to compute the mgf of X.

Use the mgf of X to determine the mean and variance of X.

2. Suppose $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim \text{Poisson}(\lambda_2)$ are independent random variables, where λ_1 and λ_2 are positive parameters. Define $Y = X_1 + X_2$. Give the distribution of Y.

Suggestion: For each k = 0, 1, 2, 3, ..., use the law of total probability to compute $\Pr(Y = k) = \sum_{m=0}^{k} \Pr(X_1 = m, X_2 = k - m).$

- 3. Suppose that on a given weekend the number of accidents at a certain intersection has a Poisson distribution with mean 0.7. What is the probability that there will be at least three accidents in the intersection during the weekend?
- 4. Suppose that a certain type of magnetic tape contains, on average, three defects per 1000 feet. What is the probability that a roll of tape 1200 feet long contains no defects?
- 5. Suppose that X_1 and X_2 are independent random variables and that X_i has a Poisson distribution with mean λ_i (i = 1, 2). Set $Y = X_1 + X_2$. For a fixed value of k (k = 0, 1, 2, 3, ...), compute the conditional probability

$$\Pr(X_1 = m \mid Y = k), \text{ for } m = 0, 1, 2, \dots m.$$