Assignment \#14

Due on Monday, April 13, 2020
Read Section 6.1 on the Definition of the Joint Distribution in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 6.2 on Marginal Distributions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 6.3 on the Independent Random Variables in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 3.4 on Bivariate Distributions in DeGroot and Schervish.
Read Section 3.5 on Marginal Distributions in DeGroot and Schervish.
Read Section 3.9 on Functions of Two or More Random Variables in DeGroot and Schervish.

Do the following problems

1. Suppose that in an electric display sign there are three light bulbs in the first row and four light bulbs in the second row. Let X denote the number of bulbs in the first row that will be burned out at a specified time t, and let Y denote the number of bulbs in the second row that will be burned out at the same time t. Suppose that the joint pmf of X and Y is as specified in Table 1:

$X \backslash Y$	0	1	2	3	4
0	0.08	0.07	0.06	0.01	0.01
1	0.06	0.10	0.12	0.05	0.02
2	0.05	0.06	0.09	0.04	0.03
3	0.02	0.03	0.03	0.03	0.04

Table 1: Joint Probability Distribution for X and $Y, p_{(X, Y)}$

Determine each of the following probabilities:
(a) $\operatorname{Pr}(X=2)$
(b) $\operatorname{Pr}(Y \geqslant 2)$
(c) $\operatorname{Pr}(X \leqslant 2$ and $Y \leqslant 2)$
(d) $\operatorname{Pr}(X=Y)$
(e) $\operatorname{Pr}(X>Y)$
2. Suppose that X and Y have a continuous joint distribution for which the pdf is defined as follows: $f(x, y)= \begin{cases}c y^{2} & \text { for } 0 \leqslant x \leqslant 2 \text { and } 0 \leqslant y \leqslant 1, \\ 0 & \text { otherwise } .\end{cases}$
Determine
(a) the value of c;
(b) $\operatorname{Pr}(X+Y>2)$;
(c) $\operatorname{Pr}(Y<1 / 2)$;
(d) $\operatorname{Pr}(X \leqslant 1)$;
(e) $\operatorname{Pr}(X=3 Y)$.
3. Suppose a point X is chosen at random from a region S in the $x y$-plane containing all points (x, y) such that $x \geqslant 0, y \geqslant 0$, and $4 y+x \leqslant 4$.
(a) Determine the joint pdf of X and Y.
(b) Suppose that S_{o} is a subset of the region S having area α, and determine $\operatorname{Pr}\left[(X, Y) \in S_{o}\right]$.
4. Suppose that X and Y have a discrete distribution for which the joint pmf is defined as follows:

$$
p_{(X, Y)}(x, y)= \begin{cases}\frac{1}{30}(x+y) & \text { for } x=0,1,2 \text { and } y=0,1,2,3 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine the marginal pmfs of X and Y.
(b) Are X and Y independent?
5. Suppose the joint pdf of X and Y is as follows:

$$
f_{(X, Y)}(x, y)= \begin{cases}\frac{15}{4} x^{2} & \text { for } 0 \leqslant y \leqslant 1-x^{2} \\ 0 & \text { otherwise } .\end{cases}
$$

(a) Determine the marginal pdfs of X and Y.
(b) Are X and Y independent?

