Assignment \#16

Due on Monday, April 20, 2020
Read Section 6.3 on the Independent Random Variables in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 7.1 on The Normal Distribution in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 5.6 on The Normal Distributions in DeGroot and Schervish.
Do the following problems

1. Suppose that $X \sim \operatorname{normal}\left(\mu, \sigma^{2}\right)$ and define $Z=\frac{X-\mu}{\sigma}$.
(a) Compute the mgf of Z.
(b) Prove that $Z \sim \operatorname{Normal}(0,1)$ and give the pdf of Z.
2. (The Chi-Square Distribution) Let $X \sim \operatorname{normal}(0,1)$ and define $Y=X^{2}$.
(a) Compute the pdf, f_{Y}, of Y.

The distribution of Y is called the Chi-Square distribution with one degree of freedom; we write $Y \sim \chi^{2}(1)$.
(b) Compute the mgf, ψ_{Y}, of Y by first computing $E\left(e^{t Y}\right)=E\left(e^{t X^{2}}\right)$, where $X \sim \operatorname{Normal}(0,1)$.
(c) Use the mgf of Y to compute $E(Y)$ and $\operatorname{Var}(Y)$ for $Y \sim \chi^{2}(1)$.
3. Let Y_{1} and Y_{2} denote two independent random variables such that $Y_{1} \sim \chi^{2}(1)$ and $Y_{2} \sim \chi^{2}(1)$. Define $W=Y_{1}+Y_{2}$.
(a) Use the mgf of the $\chi^{2}(1)$ distribution to compute the mgf of W. Give the distribution of W.
(b) Let X and Y be independent $\operatorname{Normal}(0,1)$ random variables.

Compute $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$.
4. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be independent identically distributed normal $(0,1)$ random variables. Define

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

(a) Use moment generating functions to determine the distribution of \bar{X}.
(b) Compute $E(\bar{X})$ and $\operatorname{Var}(\bar{X})$.
5. Two instruments are used to measure the height, h, of a tower. The error made by the less accurate instrument is normally distributed with mean 0 and standard deviation 0.0056 h . The error made by the more accurate instrument is normally distributed with mean 0 and standard deviation $0.0044 h$.
Let X_{1} denote the measurement made by the first instrument and X_{2} the measurement made by the second instrument. Assume that X_{1} and X_{2} are independent random variables, and let $X=\frac{X_{1}+X_{2}}{2}$, the average of the two instruments.
(a) Determine the distribution of X.
(b) Compute the probability that the average of the two measurements is within 0.005 h of the height of the tower?

