Assignment #16

Due on Monday, April 20, 2020

Read Section 6.3 on the *Independent Random Variables* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 7.1 on *The Normal Distribution* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.6 on The Normal Distributions in DeGroot and Schervish.

Do the following problems

- 1. Suppose that $X \sim \text{normal}(\mu, \sigma^2)$ and define $Z = \frac{X \mu}{\sigma}$.
 - (a) Compute the mgf of Z.
 - (b) Prove that $Z \sim \text{Normal}(0, 1)$ and give the pdf of Z.
- 2. (The Chi-Square Distribution) Let $X \sim \text{normal}(0,1)$ and define $Y = X^2$.
 - (a) Compute the pdf, f_Y , of Y. The distribution of Y is called the *Chi-Square distribution with one degree* of freedom; we write $Y \sim \chi^2(1)$.
 - (b) Compute the mgf, ψ_Y , of Y by first computing $E(e^{tY}) = E(e^{tX^2})$, where $X \sim \text{Normal}(0, 1)$.
 - (c) Use the mgf of Y to compute E(Y) and Var(Y) for $Y \sim \chi^2(1)$.
- 3. Let Y_1 and Y_2 denote two independent random variables such that $Y_1 \sim \chi^2(1)$ and $Y_2 \sim \chi^2(1)$. Define $W = Y_1 + Y_2$.
 - (a) Use the mgf of the $\chi^2(1)$ distribution to compute the mgf of W. Give the distribution of W.
 - (b) Let X and Y be independent Normal(0, 1) random variables. Compute $Pr(X^2 + Y^2 < 1)$.

4. Let $X_1, X_2, X_3, \ldots, X_n$ be independent identically distributed normal(0, 1) random variables. Define

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

- (a) Use moment generating functions to determine the distribution of \overline{X} .
- (b) Compute $E(\overline{X})$ and $Var(\overline{X})$.
- 5. Two instruments are used to measure the height, h, of a tower. The error made by the less accurate instrument is normally distributed with mean 0 and standard deviation 0.0056h. The error made by the more accurate instrument is normally distributed with mean 0 and standard deviation 0.0044h.

Let X_1 denote the measurement made by the first instrument and X_2 the measurement made by the second instrument. Assume that X_1 and X_2 are independent random variables, and let $X = \frac{X_1 + X_2}{2}$, the average of the two instruments.

- (a) Determine the distribution of X.
- (b) Compute the probability that the average of the two measurements is within 0.005h of the height of the tower?