Assignment \#17

Due on Friday, April 24, 2020
Read Section 5.3.2 on Properties of Moment Generating Functions in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 6.3 on the Independent Random Variables in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 7.1 on The Normal Distribution in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 5.6 on The Normal Distributions in DeGroot and Schervish.
Do the following problems

1. Let $X_{1} \sim \operatorname{normal}(0,1)$ and $X_{2} \sim \operatorname{normal}(0,1)$ be independent random variables. Define $Y=X_{1}^{2}+X_{2}^{2}$.
(a) Use the mgf uniqueness theorem to determine the distribution of Y.
(b) Compute $\operatorname{Pr}(Y \leqslant 1)$.
2. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be independent identically distributed normal $(0,1)$ random variables. Define

$$
Y=X_{1}+X_{2}+\cdots+X_{n}
$$

Use moment generating functions to determine the distribution of Y.
3. Let $X_{1} \sim \operatorname{normal}\left(\mu, \sigma^{2}\right)$ and $X_{2} \sim \operatorname{normal}\left(\mu, \sigma^{2}\right)$ be independent random variables.
Define $Y=\frac{\left(X_{1}-X_{2}\right)^{2}}{2 \sigma^{2}}$.
(a) Determine the distribution of Y.
(b) Compute $\operatorname{Pr}(Y \leqslant 1)$.

Suggestion: Observe that $Y=\left(\frac{X_{1}-X_{2}}{\sqrt{2} \sigma}\right)^{2}$.
4. Let X_{1} and X_{2} denote independent, $\operatorname{normal}\left(0, \sigma^{2}\right)$ random variables, where $\sigma>$ 0 . Define the random variables

$$
\bar{X}=\frac{X_{1}+X_{2}}{2} \quad \text { and } \quad Y=\frac{\left(X_{1}-X_{2}\right)^{2}}{2 \sigma^{2}}
$$

Compute the pdfs of \bar{X} and Y.
5. Let X_{1}, X_{2}, \bar{X} and Y be as in Problem 4. Show that \bar{X} and Y are independent random variables.

