Assignment #17

Due on Friday, April 24, 2020

Read Section 5.3.2 on *Properties of Moment Generating Functions* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 6.3 on the *Independent Random Variables* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 7.1 on *The Normal Distribution* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.6 on The Normal Distributions in DeGroot and Schervish.

Do the following problems

- 1. Let $X_1 \sim \text{normal}(0,1)$ and $X_2 \sim \text{normal}(0,1)$ be independent random variables. Define $Y = X_1^2 + X_2^2$.
 - (a) Use the mgf uniqueness theorem to determine the distribution of Y.
 - (b) Compute $Pr(Y \leq 1)$.
- 2. Let $X_1, X_2, X_3, \dots, X_n$ be independent identically distributed normal(0, 1) random variables. Define

$$Y = X_1 + X_2 + \dots + X_n.$$

Use moment generating functions to determine the distribution of Y.

3. Let $X_1 \sim \text{normal}(\mu, \sigma^2)$ and $X_2 \sim \text{normal}(\mu, \sigma^2)$ be independent random variables.

Define
$$Y = \frac{(X_1 - X_2)^2}{2\sigma^2}$$
.

- (a) Determine the distribution of Y.
- (b) Compute $Pr(Y \leq 1)$.

Suggestion: Observe that $Y = \left(\frac{X_1 - X_2}{\sqrt{2} \sigma}\right)^2$.

4. Let X_1 and X_2 denote independent, normal $(0, \sigma^2)$ random variables, where $\sigma > 0$. Define the random variables

$$\overline{X} = \frac{X_1 + X_2}{2}$$
 and $Y = \frac{(X_1 - X_2)^2}{2\sigma^2}$.

Compute the pdfs of \overline{X} and Y.

5. Let X_1, X_2, \overline{X} and Y be as in Problem 4. Show that \overline{X} and Y are independent random variables.