Assignment \#20

Due on Wednesday, May 6, 2020
Read Section 9.1 on Point Estimation in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 9.2 on Estimating the Mean in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.8 on The Sample Mean in DeGroot and Schervish.
Do the following problems

1. Let X denote a random variable with mean μ and variance σ^{2}. Use Chebyshev's inequality to show that

$$
\operatorname{Pr}(|X-\mu| \geqslant k \sigma) \leqslant \frac{1}{k^{2}}
$$

for all $k>0$.
2. Suppose that a factory produces a number X of items in a week, where X can be modeled by a random variable with mean 50 . Suppose also that the variance for a week's production is known to be 25 . What can be said about the probability that this week's production will be between 40 and 60 ?
3. How large a random sample must be taken from a given distribution in order for the probability to be at least 0.99 that the sample mean will be within 2 standard deviations of the mean of the distribution?
4. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from a distribution for which the mean is 6.5 and the variance is 4 . Determine how large the value of n must be in order for the following relation to be satisfied:

$$
\operatorname{Pr}\left(6 \leqslant \bar{X}_{n} \leqslant 7\right) \geqslant 0.8
$$

5. Suppose that 30% of the items in a large manufactured lot are of poor quality. Suppose also that a random sample of n items is to be taken from the lot, and let Q_{n} denote the proportion of the items in the sample that are of poor quality. Use the Chebyshev inequality to find the value of n such that

$$
\operatorname{Pr}\left(0.2 \leqslant Q_{n} \leqslant 0.4\right) \geqslant 0.75
$$

