Assignment \#3

Due on Wednesday, February 5, 2020
Read Section 3.4, Defining a Probability Function, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.5, The Definition of Probability, in DeGroot and Schervish.
Read Section 1.6, Finite Sample Spaces, in DeGroot and Schervish.
Do the following problems

1. Consider two events A and B such that $\operatorname{Pr}(A)=1 / 3$ and $\operatorname{Pr}(B)=1 / 2$. Determine the value of $\operatorname{Pr}\left(B \cap A^{c}\right)$ for each of the following conditions:
(a) A and B are disjoint;
(b) $A \subseteq B$;
(c) $\operatorname{Pr}(A \cap B)=1 / 8$.
2. Consider two events A and B with $\operatorname{Pr}(A)=0.4$ and $\operatorname{Pr}(B)=0.7$. Determine the maximum and minimum possible values for $\operatorname{Pr}(A \cap B)$ and the conditions under which each of these values is attained.
3. Prove that for every two events A and B, the probability that exactly one of the two events will occur is given by the expression

$$
\operatorname{Pr}(A)+\operatorname{Pr}(B)-2 \operatorname{Pr}(A \cap B)
$$

4. Let A and B be elements in a σ-field \mathcal{B} on a sample space \mathcal{C}, and let Pr denote a probability function defined on \mathcal{B}. Recall that $A \backslash B=\{x \in A \mid x \notin B\}$. Prove that if $B \subseteq A$, then

$$
\operatorname{Pr}(A \backslash B)=\operatorname{Pr}(A)-\operatorname{Pr}(B)
$$

5. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and B an event in \mathcal{B} with $\operatorname{Pr}(B)>0$. Let

$$
\mathcal{B}_{B}=\{D \subset \mathcal{C} \mid D=E \cap B \text { for some } E \in \mathcal{B}\}
$$

We have already seen that \mathcal{B}_{B} is a σ-field.
Let $P_{B}: \mathcal{B}_{B} \rightarrow \mathbb{R}$ be defined by $P_{B}(A)=\frac{\operatorname{Pr}(A)}{\operatorname{Pr}(B)}$ for all $A \in \mathcal{B}_{B}$. Verify that $\left(B, \mathcal{B}_{B}, P_{B}\right)$ is a probability space; that is, show that $P_{B}: \mathcal{B}_{B} \rightarrow \mathbb{R}$ is a probability function.

