Assignment #4

Due on Monday, February 10, 2020

Read Section 3.4, *Defining a Probability Function*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.5, The Definition of Probability, in DeGroot and Schervish.

Read Section 1.6, Finite Sample Spaces, in DeGroot and Schervish.

Do the following problems

1. Let (C, \mathcal{B}, Pr) be a sample space. Suppose that E_1, E_2, E_3, \ldots is a sequence of events in \mathcal{B} satisfying

$$E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$$
.

Prove that
$$\lim_{n\to\infty} \Pr(E_n) = \Pr\left(\bigcap_{k=1}^{\infty} E_k\right)$$
.

Hint: Use the analogous result for an increasing nested sequence of events presented in class and De Morgan's laws.

- 2. A point (x, y) is to be selected at random from a square S containing all the points (x, y) such that $0 \le x \le 1$ and $0 \le y \le 1$. Suppose that the probability that the selected point will belong to each specified subset of S is equal to the area of that subset. Find the probability of each of the following subsets:
 - (a) the subset of points such that $\left(x \frac{1}{2}\right)^2 + \left(y \frac{1}{2}\right)^2 \geqslant \frac{1}{4}$;
 - (b) the subset of points such that $\frac{1}{2} < x + y < \frac{3}{2}$;
 - (c) the subset of points such that $y < 1 x^2$;
 - (d) the subset of points such that x = y.
- 3. In a random experiment, two balanced dice are rolled.
 - (a) What is the probability that the sum of the two numbers that appear will be even?
 - (b) What is the probability that the difference of the two numbers that appear will be less than 3?

4. A coin is tossed as many times as necessary to turn up one head. Thus, the elements of the sample space C corresponding to this experiment are

$$H, TH, TTH, TTTH, \dots$$

Let Pr be a functions that assigns to these elements the values $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$ respectively.

- (a) Show that $Pr(\mathcal{C}) = 1$.
- (b) Let E_1 denote the event $E_1 = \{H, TH, TTH, TTTH \text{ or } TTTTH\}$, and compute $Pr(E_1)$.
- (c) Let $E_2 = \{TTTTH, TTTTTH\}$, and compute $\Pr(E_2)$, $\Pr(E_1 \cap E_2)$ and $\Pr(E_2 \setminus E_1)$
- 5. Let $C = \{x \in \mathbb{R} \mid x > 0\}$ and define Pr on open intervals (a, b) with 0 < a < b by

$$\Pr((a,b)) = \int_a^b e^{-x} dx.$$

- (a) Show that $Pr(\mathcal{C}) = 1$.
- (b) Let $E = \{x \in \mathcal{C} \mid 4 < x < \infty\}$, and compute $\Pr(E)$, $\Pr(E^c)$ and $\Pr(E \cup E^c)$.