Assignment \#4

Due on Monday, February 10, 2020
Read Section 3.4, Defining a Probability Function, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.5, The Definition of Probability, in DeGroot and Schervish.
Read Section 1.6, Finite Sample Spaces, in DeGroot and Schervish.
Do the following problems

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ be a sample space. Suppose that $E_{1}, E_{2}, E_{3}, \ldots$ is a sequence of events in \mathcal{B} satisfying

$$
E_{1} \supseteq E_{2} \supseteq E_{3} \supseteq \cdots
$$

Prove that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(E_{n}\right)=\operatorname{Pr}\left(\bigcap_{k=1}^{\infty} E_{k}\right)$.
Hint: Use the analogous result for an increasing nested sequence of events presented in class and De Morgan's laws.
2. A point (x, y) is to be selected at random from a square S containing all the points (x, y) such that $0 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant 1$. Suppose that the probability that the selected point will belong to each specified subset of S is equal to the area of that subset. Find the probability of each of the following subsets:
(a) the subset of points such that $\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2} \geqslant \frac{1}{4}$;
(b) the subset of points such that $\frac{1}{2}<x+y<\frac{3}{2}$;
(c) the subset of points such that $y<1-x^{2}$;
(d) the subset of points such that $x=y$.
3. In a random experiment, two balanced dice are rolled.
(a) What is the probability that the sum of the two numbers that appear will be even?
(b) What is the probability that the difference of the two numbers that appear will be less than 3 ?
4. A coin is tossed as many times as necessary to turn up one head. Thus, the elements of the sample space \mathcal{C} corresponding to this experiment are H,TH,TTH,TTTH, ...

Let Pr be a functions that assigns to these elements the values $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$ respectively.
(a) Show that $\operatorname{Pr}(\mathcal{C})=1$.
(b) Let E_{1} denote the event $E_{1}=\{H, T H, T T H, T T T H$ or TTTTH $\}$, and compute $\operatorname{Pr}\left(E_{1}\right)$.
(c) Let $E_{2}=\{T T T T H, T T T T T H\}$, and compute $\operatorname{Pr}\left(E_{2}\right), \operatorname{Pr}\left(E_{1} \cap E_{2}\right)$ and $\operatorname{Pr}\left(E_{2} \backslash E_{1}\right)$
5. Let $\mathcal{C}=\{x \in \mathbb{R} \mid x>0\}$ and define Pr on open intervals (a, b) with $0<a<b$ by

$$
\operatorname{Pr}((a, b))=\int_{a}^{b} e^{-x} \mathrm{~d} x
$$

(a) Show that $\operatorname{Pr}(\mathcal{C})=1$.
(b) Let $E=\{x \in \mathcal{C} \mid 4<x<\infty\}$, and compute $\operatorname{Pr}(E), \operatorname{Pr}\left(E^{c}\right)$ and $\operatorname{Pr}\left(E \cup E^{c}\right)$.

