Assignment \#5

Due on Friday, February 14, 2020
Read Section 3.5 on Independent Events in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Sections 3.6 on Conditional Probability in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 2.1 on The Definition of Conditional Probability in DeGroot and Schervish.

Read Section 2.2 on Independent Events in DeGroot and Schervish.
Do the following problems

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ be a probability space. Prove that if E_{1} and E_{2} are independent events in \mathcal{B}, then so are E_{1} and E_{2}^{c}.
Hint: Observe that $E_{1} \backslash E_{2}$ is a subset of E_{1}.
2. Let A and B denote events in a probability space $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$.
(a) If $A \subseteq B$ with $\operatorname{Pr}(B)>0$, what is the value of $\operatorname{Pr}(A \mid B)$?
(b) If A and B are disjoint events and $\operatorname{Pr}(B)>0$, what is the value of the conditional probability $\operatorname{Pr}(A \mid B)$?
3. A box contains r red balls and b blue balls. One ball is selected at random and the color is observed. The ball is then returned to the the box and k additional balls of the same color are also put in the box. A second ball is the selected at random, its color is observed, and it is returned to the box with k additional balls of the same color. Each time another ball is selected, the process is repeated. If four balls are selected, what is the probability that the first three balls will be red and the fourth one will be blue?
4. For any three events A, B and D, such that $\operatorname{Pr}(D)>0$, prove that

$$
\operatorname{Pr}(A \cup B \mid D)=\operatorname{Pr}(A \mid D)+\operatorname{Pr}(B \mid D)-\operatorname{Pr}(A \cap B \mid D)
$$

5. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space. Three events, E_{1}, E_{2} and E_{3}, are said to be mutually independent is they are pairwise independent, and

$$
\operatorname{Pr}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{2}\right) \cdot \operatorname{Pr}\left(E_{3}\right)
$$

Let $\mathcal{C}=\{1,2,3,4\}$ and \mathcal{B} be the set of all subsets of \mathcal{C}. Define a probability on \mathcal{B} using the equal likelihood assumption; that is,

$$
\operatorname{Pr}(c)=\frac{1}{4}, \text { for all } c \in \mathcal{C} .
$$

Put $E_{1}=\{1,2\}, E_{2}=\{1,3\}$ and $E_{3}=\{2,3\}$.
Verify that E_{1}, E_{2} and E_{3} are pairwise independent, but are not mutually independent.

