Solutions to Review Problems for Exam 1

1. There are 5 red chips and 3 blue chips in a bowl. The red chips are numbered $1,2,3,4,5$ respectively, and the blue chips are numbered $1,2,3$ respectively. If two chips are to be drawn at random and without replacement, find the probability that these chips are have either the same number or the same color.
Solution: The sample space for drawing two chips at random out of a bowl containing 8 chips consists of

$$
\begin{equation*}
\frac{8 \times 7}{2}=28 \tag{1}
\end{equation*}
$$

pairs of chips. The argument behind the calculation in (1) is as follows: There are 8 choices for the first draw. Because the sampling is without replacement, there are 7 choices for the second draw. Since the chips are drawn two at a time, the order of the draw does not matter; thus, we need to divide by 2 because there 2 ways in which the chips in the pair can be ordered. That is why we divided by 2 in the expression in (1).
The assumption of randomness in the draws implies that all the elements of the sample space have the same likelihood of $1 / 28$.
Let R denote the event that the two chips are red. Since there are 5 red chips in the bowl, there are

$$
\frac{5 \times 4}{2}=10
$$

pairs of red chips in the sample space. Therefore, by the equal likelihood assumption,

$$
\begin{equation*}
\operatorname{Pr}(R)=\frac{10}{28}=\frac{5}{14} \tag{2}
\end{equation*}
$$

Let B denote the event that both chips are blue. Then, B consists of

$$
\frac{3 \times 2}{2}=3
$$

pairs of blue chips in the sample space. Consequently,

$$
\begin{equation*}
\operatorname{Pr}(B)=\frac{3}{28} \tag{3}
\end{equation*}
$$

Observe that the events R and B are disjoint; thus, by the finite additivity property,

$$
\begin{equation*}
\operatorname{Pr}(R \cup B)=\operatorname{Pr}(R)+\operatorname{Pr}(B)=\frac{13}{28} \tag{4}
\end{equation*}
$$

where we have used the results in (2) and (3).
Note that $R \cup B$ is the event that both chips are of the same color.
Let N denote the event that both chips show the same number. Then, N consists of exactly three outcomes in the sample space; accordingly,

$$
\begin{equation*}
\operatorname{Pr}(N)=\frac{3}{28} \tag{5}
\end{equation*}
$$

Finally, since $R \cup B$ and N are disjoint, the probability that the chips are have either the same number or the same color is

$$
\operatorname{Pr}(R \cup B \cup N)=\operatorname{Pr}(R \cup B)+\operatorname{Pr}(N)=\frac{13}{28}+\frac{3}{28}=\frac{4}{7},
$$

where we have used the finite additivity property and (4) and (5).
2. A person has purchased 10 of 1,000 tickets sold in a certain raffle. To determine the five prize winners, 5 tickets are drawn at random and without replacement. Compute the probability that this person will win at least one prize.
Solution: Let N denote the event that the person will not win any prize. Then, N^{c} is the event that the person will win at least one prize. Thus, we will compute $\operatorname{Pr}(N)$ to get

$$
\begin{equation*}
\operatorname{Pr}\left(N^{c}\right)=1-\operatorname{Pr}(N) \tag{6}
\end{equation*}
$$

by the complement rule of probability.
Let N_{1} denote the event that the person does not win in the first draw. Then,

$$
\begin{equation*}
\operatorname{Pr}\left(N_{1}\right)=\frac{990}{1000} \tag{7}
\end{equation*}
$$

since there are 990 ways of not picking one of the 10 tickets that the person bought.
Letting N_{2} denote the event of not winning in the second draw. Then, by the multiplication rule

$$
\operatorname{Pr}\left(N_{1} \cap N_{2}\right)=\operatorname{Pr}\left(N_{1}\right) \cdot \operatorname{Pr}\left(N_{1} \mid N_{1}\right)
$$

where

$$
\operatorname{Pr}\left(N_{1} \mid N_{1}\right)=\frac{989}{999}
$$

since there are 989 ways of picking a non-wining ticket in the second draw once a non-winning ticket has been drawn in the first draw. Consequently, using (7),

$$
\operatorname{Pr}\left(N_{1} \cap N_{2}\right)=\frac{990}{1000} \cdot \frac{989}{999} .
$$

Continuing in this fashion, letting N_{k} denote the event of not drawing the wining ticket in the $k^{\text {th }}$ draw, we get that

$$
\begin{equation*}
\operatorname{Pr}\left(N_{1} \cap N_{2} \cap N_{3} \cap N_{4} \cap N_{5}\right)=\frac{990}{1000} \cdot \frac{989}{999} \cdot \frac{988}{998} \cdot \frac{987}{997} \cdot \frac{986}{996} . \tag{8}
\end{equation*}
$$

Observe that $N=N_{1} \cap N_{2} \cap N_{3} \cap N_{4} \cap N_{5}$. It then follows from (8) that

$$
\begin{aligned}
\operatorname{Pr}(N) & =\frac{(990)(989)(988)(987)(986)}{(1000)(999)(998)(997)(996)} \\
& =\frac{435841667261}{458349513900}
\end{aligned}
$$

so that,

$$
\begin{equation*}
\operatorname{Pr}(N) \approx 0.9509 \tag{9}
\end{equation*}
$$

Finally, combining the results in (6) and (9), we get that the probability of the person winning at least one of the prizes is

$$
\operatorname{Pr}\left(N^{c}\right) \approx 0.0491
$$

or about 4.91%.
3. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually disjoint events in \mathcal{B}. Find $\operatorname{Pr}\left[\left(E_{1} \cup E_{2}\right) \cap E_{3}\right]$ and $\operatorname{Pr}\left(E_{1}^{c} \cup E_{2}^{c}\right)$.
Solution: Since E_{1}, E_{2} and E_{3} are mutually disjoint events, it follows that $\left(E_{1} \cup E_{2}\right) \cap E_{3}=\emptyset$; so that

$$
\operatorname{Pr}\left[\left(E_{1} \cup E_{2}\right) \cap E_{3}\right]=0 .
$$

Next, use De Morgan's law to compute

$$
\begin{aligned}
\operatorname{Pr}\left(E_{1}^{c} \cup E_{2}^{c}\right) & =\operatorname{Pr}\left(\left[E_{1} \cap E_{2}\right]^{c}\right) \\
& =\operatorname{Pr}\left(\emptyset^{c}\right) \\
& =\operatorname{Pr}(\mathcal{C}) \\
& =1
\end{aligned}
$$

4. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B events in \mathcal{B}. Show that

$$
\begin{equation*}
\operatorname{Pr}(A \cap B) \leq \operatorname{Pr}(A) \leq \operatorname{Pr}(A \cup B) \leq \operatorname{Pr}(A)+\operatorname{Pr}(B) \tag{10}
\end{equation*}
$$

Solution: Since $A \cap B \subseteq A$, it follows that

$$
\begin{equation*}
\operatorname{Pr}(A \cap B) \leqslant \operatorname{Pr}(A) \tag{11}
\end{equation*}
$$

by the monotonicity property of probability.
Similarly, since $A \subseteq A \cup B$, we get that

$$
\begin{equation*}
\operatorname{Pr}(A) \leqslant \operatorname{Pr}(A \cup B) \tag{12}
\end{equation*}
$$

Next, use the inclusion-exclusion property of probability,

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

and fact that that

$$
\operatorname{Pr}(A \cap B) \geqslant 0
$$

by the second Kolmogorov axiom of probability, to obtain that

$$
\begin{equation*}
\operatorname{Pr}(A \cup B) \leqslant \operatorname{Pr}(A)+\operatorname{Pr}(B) \tag{13}
\end{equation*}
$$

Finally, combine (11), (12) and (13) to obtain (10).
5. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually independent events in \mathcal{B} with probabilities $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$, respectively. Compute the exact value of $\operatorname{Pr}\left(E_{1} \cup E_{2} \cup E_{3}\right)$.
Solution: First, use De Morgan's law to compute

$$
\begin{equation*}
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left(E_{1}^{c} \cap E_{2}^{c} \cap E_{3}^{c}\right) \tag{14}
\end{equation*}
$$

Then, since E_{1}, E_{2} and E_{3} are mutually independent events, it follows from (14) that

$$
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left(E_{1}^{c}\right) \cdot \operatorname{Pr}\left(E_{2}^{c}\right) \cdot \operatorname{Pr}\left(E_{3}^{c}\right)
$$

so that

$$
\begin{aligned}
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right] & =\left(1-\operatorname{Pr}\left(E_{1}\right)\right)\left(1-\operatorname{Pr}\left(E_{2}\right)\right)\left(1-\operatorname{Pr}\left(E_{3}\right)\right) \\
& =\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \\
& =\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\frac{1}{4} \tag{15}
\end{equation*}
$$

It then follows from (15) that

$$
\operatorname{Pr}\left(E_{1} \cup E_{2} \cup E_{3}\right)=1-\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\frac{3}{4}
$$

6. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually independent events in \mathcal{B} with $\operatorname{Pr}\left(E_{1}\right)=\operatorname{Pr}\left(E_{2}\right)=\operatorname{Pr}\left(E_{3}\right)=\frac{1}{4}$. Compute $\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right]$.
Solution: First, use De Morgan's law to compute

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c} \cap E_{3}^{c}\right] \tag{16}
\end{equation*}
$$

Next, use the assumption that E_{1}, E_{2} and E_{3} are mutually independent events to obtain from (16) that

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c}\right] \cdot \operatorname{Pr}\left[E_{3}^{c}\right], \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Pr}\left[E_{3}^{c}\right]=1-\operatorname{Pr}\left(E_{3}\right)=\frac{3}{4}, \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c}\right] & =1-\operatorname{Pr}\left[E_{1}^{c} \cap E_{2}^{c}\right] \tag{19}\\
& =1-\operatorname{Pr}\left[E_{1}^{c}\right] \cdot \operatorname{Pr}\left[E_{2}^{c}\right],
\end{align*}
$$

by the independence of E_{1} and E_{2}.

It follows from the calculations in (19) that

$$
\begin{align*}
\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c}\right] & =1-\left(1-\operatorname{Pr}\left[E_{1}\right]\right)\left(1-\operatorname{Pr}\left[E_{2}\right]\right) \\
& =1-\left(1-\frac{1}{4}\right)\left(1-\frac{1}{4}\right) \\
& =1-\frac{3}{4} \cdot \frac{3}{4} \tag{20}\\
& =\frac{7}{16}
\end{align*}
$$

Substitute (18) and the result of the calculations in (20) into (17) to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right]=\frac{7}{16} \cdot \frac{3}{4}=\frac{21}{64} . \tag{21}
\end{equation*}
$$

Finally, use the result in (21) to compute

$$
\begin{aligned}
\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}^{c}\right] & =1-\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right] \\
& =1-\frac{21}{64} \\
& =\frac{43}{64}
\end{aligned}
$$

7. A bowl contains 5 chips of the same size and shape. One the chips is red and the rest are blue. Draw chips from the bowl at random, one at a time and without replacement, until the red chip is drawn.
(a) Describe the sample space of this experiment.

Solution: Denoting the red chip by R and any of the blue chips by B, we have that the sample space for this experiment is

$$
\mathcal{C}=\{R, B R, B B R, B B B R, B B B B R\} .
$$

(b) Define the probability function for this experiment. Justify your answer.

Solution: Since we are assuming that the chips are drawn at random and without replacement, we have that

$$
\begin{gathered}
\operatorname{Pr}(R)=\frac{1}{5} \\
\operatorname{Pr}(B R)=\frac{4}{5} \cdot \frac{1}{4}=\frac{1}{5} \\
\operatorname{Pr}(B B R)=\frac{4}{5} \cdot \frac{3}{4} \cdot \frac{1}{3}=\frac{1}{5} \\
\operatorname{Pr}(B B B R)=\frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2}=\frac{1}{5}
\end{gathered}
$$

and

$$
\operatorname{Pr}(B B B B R)=\frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{1}=\frac{1}{5}
$$

Thus, we conclude that

$$
\operatorname{Pr}(c)=\frac{1}{5}, \quad \text { for all } c \in \mathcal{C}
$$

(c) Compute the probability that at least two draws will be needed to get the red chip.
Solution: The event, E, that at least two draws will be needed to get the red chip, is the complement of the set $\{R\}$. Thus, $E=\{R\}^{c}$ and therefore

$$
\operatorname{Pr}(E)=1-\operatorname{Pr}(\{R\})=1-\frac{1}{5}=\frac{4}{5}
$$

8. Dreamboat cars are produced at three different factories A, B and C. Factory A produces 20 percent of the total output of Dreamboats, B produces 50 percent, and C produces 30 percent. However, 5 percent of the cars produced at A are lemons, 2 percent of those produced at B are lemons, and 10 percent of those produced at C are lemons. If you buy a Dreamboat and it turns out to be lemon, what is the probability that it was produced at factory A?
Solution: Let A denote the event that the car was produced in Factory A, B the event the car was made in Factory B, and C the event the car was made in Factory C. We then have that

$$
\operatorname{Pr}(A)=0.20, \quad \operatorname{Pr}(B)=0.50 \quad \text { and } \quad \operatorname{Pr}(C)=0.30
$$

Let L denote the event that a given car is a lemon. We are then given the conditional probabilities

$$
\operatorname{Pr}(L \mid A)=0.05, \quad \operatorname{Pr}(L \mid B)=0.02, \quad \text { and } \quad \operatorname{Pr}(L \mid C)=0.10
$$

We want to compute $\operatorname{Pr}(A \mid L)$,

$$
\operatorname{Pr}(A \mid L)=\frac{\operatorname{Pr}(A \cap L)}{\operatorname{Pr}(L)}
$$

where

$$
\operatorname{Pr}(A \cap L)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(L \mid A)=(0.20) \cdot(0.05)=0.01
$$

and

$$
\begin{aligned}
\operatorname{Pr}(L) & =\operatorname{Pr}(A) \cdot \operatorname{Pr}(L \mid A)+\operatorname{Pr}(B) \cdot \operatorname{Pr}(L \mid B)+\operatorname{Pr}(C) \cdot \operatorname{Pr}(L \mid C) \\
& =(0.20) \cdot(0.05)+(0.50) \cdot(0.02)+(0.30) \cdot(0.10) \\
& =0.01+0.01+0.03 \\
& =0.05 .
\end{aligned}
$$

Hence,

$$
\operatorname{Pr}(A \mid L)=\frac{0.01}{0.05}=\frac{1}{5}
$$

or 20%.
9. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B events in \mathcal{B}. Given that $\operatorname{Pr}(A)=1 / 3, \operatorname{Pr}(B)=1 / 5$ and $\operatorname{Pr}(A \mid B)+\operatorname{Pr}(B \mid A)=2 / 3$, compute $\operatorname{Pr}\left(A^{c} \cup B^{c}\right)$.

Solution: Assume that

$$
\begin{equation*}
\operatorname{Pr}(A)=\frac{1}{3}, \quad \operatorname{Pr}(B)=\frac{1}{5}, \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)+\operatorname{Pr}(B \mid A)=\frac{2}{3} \tag{23}
\end{equation*}
$$

First, use De Morgan's Law and the Rule of Complements to compute

$$
\begin{aligned}
\operatorname{Pr}\left(A^{c} \cup B^{c}\right) & =\operatorname{Pr}\left((A \cap B)^{c}\right) \\
& =1-\operatorname{Pr}(A \cap B)
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}\left(A^{c} \cup B^{c}\right)=1-\operatorname{Pr}(A) \cdot \operatorname{Pr}(B \mid A) \tag{24}
\end{equation*}
$$

Thus, we need to compute $\operatorname{Pr}(B \mid A)$. To do so, first use

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

to obtain

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A) \cdot \operatorname{Pr}(B \mid A)}{\operatorname{Pr}(B)}
$$

or

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\frac{5}{3} \cdot \operatorname{Pr}(B \mid A) \tag{25}
\end{equation*}
$$

in view of (22). Next, combine (25) and (23) to obtain

$$
\frac{5}{3} \cdot \operatorname{Pr}(B \mid A)+\operatorname{Pr}(B \mid A)=\frac{2}{3}
$$

from which we get

$$
\operatorname{Pr}(B \mid A)=\frac{1}{4}
$$

Using this value in (24) and the value of $\operatorname{Pr}(A)$ in (22) we obtain that

$$
\operatorname{Pr}\left(A^{c} \cup B^{c}\right)=1-\frac{1}{3} \cdot \frac{1}{4},
$$

from which we get that

$$
\operatorname{Pr}\left(A^{c} \cup B^{c}\right)=\frac{11}{12}
$$

10. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B independent events in \mathcal{B} with $\operatorname{Pr}(B)>0$. Given that $\operatorname{Pr}(A)=1 / 3$, compute $\operatorname{Pr}\left(A \cup B^{c} \mid B\right)$.
Solution: Use the definition of conditional probability to compute

$$
\begin{equation*}
\operatorname{Pr}\left(A \cup B^{c} \mid B\right)=\frac{\operatorname{Pr}\left(\left(A \cup B^{c}\right) \cap B\right)}{\operatorname{Pr}(B)} \tag{26}
\end{equation*}
$$

where, by the distributive property,

$$
\left(A \cup B^{c}\right) \cap B=(A \cap B) \cup\left(B^{c} \cap B\right)=(A \cap B) \cup \emptyset=A \cap B ;
$$

so that,

$$
\operatorname{Pr}\left(\left(A \cup B^{c}\right) \cap B\right)=\operatorname{Pr}(A \cap B)
$$

and, using the assumption of independence of A and B,

$$
\operatorname{Pr}\left(\left(A \cup B^{c}\right) \cap B\right)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

Consequently, in view of (26),

$$
\operatorname{Pr}\left(A \cup B^{c} \mid B\right)=\operatorname{Pr}(A)=\frac{1}{3}
$$

