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Solutions to Review Problems for Exam 3

1. Let X have mgf given by

ψ
X

(t) =
1

3
et +

2

3
e2t, for t ∈ R. (1)

(a) Give the distribution of X

Solution: The mgf in (1) corresponds to a discrete random variable with
pmf

p
X

(k) =



1

3
, if k = 1;

2

3
, if k = 2;

0, elsewhere.

�

(b) Compute the expected value and variance of X.

Solution: Compute the derivatives of the mgf in (1) to get

ψ′
X

(t) =
1

3
et +

4

3
e2t, for t ∈ R, (2)

and

ψ′′
X

(t) =
1

3
et +

8

3
e2t, for t ∈ R. (3)

Using (2) and (3) we then obtain

E(X) = ψ′
X

(0) =
5

3
,

E(X2) = ψ′′
X

(0) = 3.

Thus, the variance of X is

Var(X) = E(X2)− (E(X))2 = 3− 25

9
=

2

9
.

�
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2. Let X have mgf given by

ψ
X

(t) =


et − e−t

2t
, if t 6= 0;

1, if t = 0.

(4)

(a) Give the distribution of X

Solution: Looking at the handout on special distributions we see that the
mgf given in (4) corresponds to that of a uniform(−1, 1) random variable.
Thus, by the mgf uniqueness theorem, X ∼ Uniform(−1, 1), Consequently,
the pdf of X is given by

f
X

(x) =


1

2
, if − 1 < x < 1;

0, elsewhere.

�

(b) Compute the expected value and variance of X.

Solution: The expected value and variance of X can also be obtained by
reading the special distributions handout:

E(X) =
−1 + 1

2
= 0

and

Var(X) =
(1− (−1))2

12
=

4

12
=

1

3
.

�

3. A random point (X, Y ) is distributed uniformly on the square with vertices
(−1,−1), (1,−1), (1, 1) and (−1, 1).

(a) Give the joint pdf for X and Y .

(b) Compute the following probabilities:

(i) Pr(X2 + Y 2 < 1),

(ii) Pr(2X − Y > 0),

(iii) Pr(|X + Y | < 2).
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x

y

Figure 1: Sketch of square in Problem 3

Solution: The square is pictured in Figure 1 and has area 4.

(a) Consequently, the joint pdf of (X, Y ) is given by

f
(X,Y )

(x, y) =


1

4
, for − 1 < x < 1,−1 < y < 1;

0 elsewhere.

(5)

(b) Denoting the square in Figure 1 by R, it follows from (5) that, for any
subset A of R2,

Pr[(x, y) ∈ A] =

∫∫
A

f
(X,Y )

(x, y) dxdy =
1

4
· area(A ∩R); (6)

that is, Pr[(x, y) ∈ A] is one–fourth the area of the portion of A in R.

We will use the formula in (6) to compute each of the probabilities in (i),
(ii) and (iii).

(i) In this case, A is the circle of radius 1 around the origin in R2 and
pictured in Figure 2.
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x

y

A

Figure 2: Sketch of A in Problem 3(b)(i)

Note that the circle A in Figure 2 is entirely contained in the square
R so that, by the formula in (6),

Pr(X2 + Y 2 < 1) =
area(A)

4
=
π

4
.

(ii) The set A in this case is pictured in Figure 3 on page 5. Thus, in

this case, A ∩R is a trapezoid of area 2 ·
1
2

+ 3
2

2
= 2, so that, by the

formula in (6),

Pr(2X − Y > 0) =
1

4
· area(A ∩R) =

1

2
.

(iii) In this case, A is the region in the xy–plane between the lines x+y = 2
and x+ y = −2 (see Figure 4 on page 6). Thus, A∩R is R; so that,
by the formula in (6),

Pr(|X + Y | < 2) =
area(R)

4
= 1.

�
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Figure 3: Sketch of A in Problem 3(b)(ii)

X\Y 2 3 4
1 1

12
1
6

0
2 1

6
0 1

3

3 1
12

1
6

0

Table 1: Joint Probability Distribution for X and Y , p
(X,Y )

4. A random vector (X, Y ) has the joint distribution shown in Table 1.

(a) Show that X and Y are not independent.

Solution: Table 2 shows the marginal distributions of X and Y on the
margins.

Observe from Table 2 that

p
(X,Y )

(1, 4) = 0,

while

p
X

(1) =
1

4
and p

Y
(4) =

1

3
.

Thus,

p
X

(1) · p
Y

(4) =
1

12
;
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Figure 4: Sketch of A in Problem 3(b)(iii)

X\Y 2 3 4 p
X

1 1
12

1
6

0 1
4

2 1
6

0 1
3

1
2

3 1
12

1
6

0 1
4

p
Y

1
3

1
3

1
3

1

Table 2: Joint pdf for X and Y and marginal distributions p
X

and p
Y

so that
p
(X,Y )

(1, 4) 6= p
X

(1) · p
Y

(4),

and, therefore, X and Y are not independent. �

(b) Give a probability table for random variables U and V that have the same
marginal distributions as X and Y , respectively, but are independent.

Solution: Table 3 on page 7 shows the joint pmf of (U, V ) and the
marginal distributions, p

U
and p

V
. �

5. An experiment consists of independent tosses of a fair coin. Let X denote the
number of trials needed to obtain the first head, and let Y be the number of
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U\V 2 3 4 p
U

1 1
12

1
12

1
12

1
4

2 1
6

1
6

1
6

1
2

3 1
12

1
12

1
12

1
4

p
V

1
3

1
3

1
3

1

Table 3: Joint pdf for U and V and their marginal distributions.

trials needed to get two heads in repeated tosses. Are X and Y independent
random variables?

Solution: X has a geometric distribution with parameter p =
1

2
, so that

p
X

(k) =
1

2k
, for k = 1, 2, 3, . . . . and 0 elsewhere. (7)

On the other hand,

Pr[Y = 2] =
1

4
, (8)

since, in two repeated tosses of a coin, the events are HH, HT , TH and TT ,
and these events are equally likely.

Next, consider the joint event (X = 2, Y = 2). Note that

(X = 2, Y = 2) = [X = 2] ∩ [Y = 2] = ∅,

since [X = 2] corresponds to the event TH, while [Y = 2] to the event HH.
Thus,

Pr(X = 2, Y = 2) = 0,

while

p
X

(2) · p
Y

(2) =
1

4
· 1

4
=

1

16
,

by (7) and (8). Thus,

p
(X,Y )

(2, 2) 6= p
X

(2) · p
X

(2).

Hence, X and Y are not independent. �

6. Let g(t) denote a non–negative, integrable function of a single variable with the
property that ∫ ∞

0

g(t) dt = 1.
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Define

f(x, y) =


2g(
√
x2 + y2)

π
√
x2 + y2

, for 0 < x <∞, 0 < y <∞,

0, otherwise.

Show that f(x, y) is a joint pdf for two random variables X and Y .

Solution: First observe that f is non–negative since g is non–negative. Next,
compute ∫∫

R2

f(x, y) dx dy =

∫ ∞
0

∫ ∞
0

2g(
√
x2 + y2)

π
√
x2 + y2

dx dy.

Switching to polar coordinates we then get that∫∫
R2

f(x, y) dx dy =

∫ π/2

0

∫ ∞
0

2g(r)

πr
r dr dθ

=
π

2

∫ ∞
0

2

π
g(r) dr

=

∫ ∞
0

g(r) dr

= 1;

therefore, f(x, y) is indeed a joint pdf for two random variables X and Y . �

7. Suppose that two persons make an appointment to meet between 5 PM and
6 PM at a certain location and they agree that neither person will wait more
than 10 minutes for each person. If they arrive independently at random times
between 5 PM and 6 PM, what is the probability that they will meet?

Solution: Let X denote the arrival time of the first person and Y that of the
second person. Then, X and Y are independent and uniformly distributed on
the interval (5 PM, 6 PM), in hours. It then follows that the joint pdf of X and
Y is

f
(X,Y )

(x, y) =

{
1, if 5 PM < x < 6 PM, 5 PM < x < 6 PM,

0, elsewhere.
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Define W = |X − Y |; this is the time that one person would have to wait for
the other one. Then, W takes on values, w, between 0 and 1 (in hours). The
probability that that a person would have to wait more than 10 minutes is

Pr(W > 1/6),

since the time is being measured in hours. It then follows that the probability
that the two persons will meet is

1− Pr(W > 1/6) = Pr(W 6 1/6) = F
W

(1/6).

We will therefore need to find the cdf of W . To do this, we compute

Pr(W 6 w) = Pr(|X − Y | 6 w), for 0 < w < 1,

=

∫∫
A

f
(X,Y )

(x, y) dx dy,

where A is the event

A = {(x, y) ∈ R2 | 5 PM < x < 6 PM, 5 PM < y < 6 PM, |x− y| 6 w}.

This event is pictured in Figure 5.

We then have that

Pr(W 6 w) =

∫∫
A

dx dy

= area(A),

where the area of A can be computed by subtracting from 1 the area of the two
corner triangles shown in Figure 5:

Pr(W 6 w) = 1− (1− w)2

= 2w − w2.

Consequently, F
W

(w) = 2w − w2 for 0 < w < 1. Thus the probability that the
two persons will meet is

F
W

(1/6) = 2 · 1

6
−
(

1

6

)2

=
11

36
,

or about 30.56%. �
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Figure 5: Event A in the xy–plane

8. Assume that the number of calls coming per minute into a hotel’s reservation
center follows a Poisson distribution with mean 3.

(a) Find the probability that no calls come in a given 1 minute period.

Solution: Let Y denote the number of calls that come to the hotel’s
reservation center in one minute. Then, Y ∼ Poisson(3); so that,

p
Y

(k) =
3k

k!
e−3, for k = 0, 1, 2, . . .

Then, the probability that no calls will come in the given minute is

Pr(Y = 0) = p
Y

(0) = e−3 ≈ 0.05,

or about 5%. �

(b) Assume that the number of calls arriving in two different minutes are
independent. Find the probability that at least two calls will arrive in a
given two minute period.
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Solution: Let Y1 denote the number of calls that arrive in one minute
and Y2 denote the number of calls that arrive in another minute. We then
have that

Yi ∼ Poisson(3), for i = 1, 2,

and Yi and Y2 are independent. We want to compute

Pr(Y1 + Y2 > 2).

To do this, we determine the distribution of W = Y1 + Y2.

Since Y1 and Y2 are independent,

ψ
W

(t) = ψ
Y1+Y2

(t) = ψ
Y1

(t) · ψ
Y2

(t);

so that,
ψ

W
(t) = e3(e

t−1) · e3(et−1) = e6(e
t−1),

which is the mgf of a Poisson(6) distribution. Thus, by the mgf Uniqueness
Theorem, W ∼ Poisson(6). We then have that

p
W

(k) =
6k

k!
e−6, for k = 0, 1, 2, . . .

Therefore,

Pr(Y1 + Y2 > 2) = Pr(W > 2)

= 1− Pr(W < 2)

= 1− Pr(W = 0)− Pr(W = 1)

= 1− e−6 − 6e−6

= 1− 7

e6

≈ 0.9826.

Hence, the probability that at least two calls will arrive in a given two
minute period is about 98.3%. �
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9. Let Y ∼ binomial(100, 1/2). Use the central limit theorem to estimate the value
of Pr(Y = 50).

Suggestion: Observe that Pr(Y = 50) = Pr(49.5 < Y ≤ 50.5), since Y is
discrete.

Solution: We use the central limit theorem to estimate

Pr(49.5 < Y 6 50.5).

By the central limit theorem,

Pr(49.5 < Y 6 50.5) ≈ Pr

(
49.5− nµ√

nσ
< Z 6

50.5− nµ√
nσ

)
, (9)

where Z ∼ normal(0, 1), n = 100, and nµ = 50 and

σ =

√
1

2

(
1− 1

2

)
=

1

2
.

We then obtain from (9) that

Pr(49.5 < Y 6 50.5) ≈ Pr (−0.1 < Z 6 0.1)

≈ F
Z
(0.1)− F

Z
(−0.1)

≈ 2F
Z
(0.1)− 1

≈ 2(0.5398)− 1

≈ 0.0796.

Thus,
Pr(Y = 50) ≈ 0.08,

or about 8%. �

10. Roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of
the 36 rolls. Estimate the probability that 108 ≤ Y ≤ 144.

Suggestion: Since the event of interest is (Y ∈ {108, 109, . . . , 144}), rewrite
Pr(108 ≤ Y ≤ 144) as

Pr(107.5 < Y 6 144.5).
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Solution: Let X1, X2, . . . , Xn, where n = 36, denote the outcomes of the
36 rolls. Since we are assuming that the die is balanced, the random variables
X1, X2, . . . , Xn are identically uniformly distributed over the digits {1, 2, . . . , 6};
in other words, X1, X2, . . . , Xn is a random sample from the discrete uniform(6)
distribution. Consequently, the mean of the distribution is

µ =
6 + 1

2
= 3.5, (10)

and the variance is

σ2 =
(6 + 1)(6− 1)

12
=

35

12
. (11)

We also have that

Y =
n∑
k=1

Xk,

where n = 36.

By the central limit theorem,

Pr(107.5 < Y 6 144.5) ≈ Pr

(
107.5− nµ√

nσ
< Z 6

144.5− nµ√
nσ

)
, (12)

where Z ∼ normal(0, 1), n = 36, and µ and σ are given in (10) and (11),
respectively. We then have from (12) that

Pr(107.5 < Y 6 144.5) ≈ Pr (−1.81 < Z 6 1.81)

≈ F
Z
(1.81)− F

Z
(−1.81)

≈ 2F
Z
(1.81)− 1

≈ 2(0.9649)− 1

≈ 0.9298;

so that the probability that 108 6 Y 6 144 is about 93%. �

11. The standard voltage in residences in the United States of America is 120 volts.
Assume that this voltage can be modeled by a random variable with mean
120 and variance 25. Suppose that some sensitive electrical appliances can be
damaged if the voltage is not between 110 and 130. Use Chebyshev’s inequality
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to find an upper bound for the probability that damage will occur to a sensitive
electrical appliance.

Solution: Let X denote the voltage at a residence. We are assuming that X is
a random variable with mean µ = 120 and variance σ2 = 25. We find an upper
bound for the probability

Pr(X < 110 or X > 130). (13)

The probability in (13) is the same as the probability

Pr(X − µ < −10 or X − µ > 10);

so that,
Pr(X < 110 or X > 130) = Pr(|X − µ| > 10).

Thus, bu the monotonicity property of probability,

Pr(X < 110 or X > 130) 6 Pr(|X − µ| > 10). (14)

It follows from Chebyshev’s inequality that

Pr(|X − µ| > 10) 6
1

102
Var(X);

so that,

Pr(|X − µ| > 10) 6
25

100
=

1

4
.

Hence, in view of (14),

Pr(X < 110 or X > 130) 6
1

4
.

Therefore, the probability that damage will occur to a sensitive electrical appli-
ance is at most 25%. �

12. Many random number generators, like the RAND() function in MS Excel, are
pseudo–random number generators. These are algorithms that provide a (real)
random number in the interval (0, 1). Many of these pseudo–random numbers
can be modeled by a uniform(0, 1) random variable.

Suppose a pseudo–random number generator is used to generate 400 random
numbers from the interval [0, 1].
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(a) Use Chebyshevs inequality to find a lower bound for the probability that
the sum of the numbers lies between 190 and 210.

(b) Use the central limit theorem to estimate the probability that the sum of
the numbers lies between 190 and 210.

Solution: Let U1, U2, . . . , Un be iid uniform(0, 1) random variables, where n =
400. Then,

µ = E(Uk) =
1

2
, for all k,

and

σ2 = Var(Uk) =
1

12
, for all k.

These values were obtained using the special distributions sheet.

Define

Y =
n∑
k=1

Uk, (15)

where n = 400.

(a) We use Chebyshevs inequality to find a lower bound for the probability

Pr(190 < Y < 210). (16)

The probability in (16) can be written as

Pr(190 < Y < 210) = Pr(190− 200 < Y − nµ < 210− 200)

= Pr(−10 < Y − nµ < 10)

= Pr(|Y − nµ| < 10);

so that, using the complement rule of probability

Pr(190 < Y < 210) = 1− Pr(|Y − nµ| > 10). (17)

Next, use Chebyshev’s inequality to estimate the right–most probability
in (17) to get

Pr(|Y − nµ| > 10) 6
1

102
Var(Y ),

where

Var(Y ) = nσ2 = (400)
1

12
≈ 33.33;
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so that, approximately,

Pr(|Y − nµ| > 10) 6 0.3333. (18)

Combining (17) and the estimate in (18), we obtain the estimate

Pr(190 < Y < 210) > 1− 0.3333,

or
Pr(190 < Y < 210) > 0.6667. (19)

Thus, a lower bound for the probability that the sum of the numbers lies
between 190 and 210 is about 67%.

(b) We apply the central limit theorem to estimate

Pr(190 < Y < 210) = Pr(190 < Y 6 210), (20)

where Y is given in (15); observe that Y is a continuous random variable.

Rewrite the expression in (20) as follows:

Pr(190 < Y < 210) = Pr

(
190− 200

20(0.2887)
<
Y − nµ√

nσ
6

210− 200

20(0.2887)

)

≈ Pr

(
−1.73 <

Y − nµ√
nσ

6 1.73

)
.

Thus, applying the central limit theorem, we get the estimate

Pr(190 < Y < 210) ≈ Pr (−1.73 < Z 6 1.73) ,

where Z ∼ normal(0, 1), or

Pr(190 < Y < 210) ≈ F
Z
(1.73)− F

Z
(−1.73)

Using the NORMDIST function in MS Excel, we obtain that

Pr(190 < Y < 210) ≈ 0.9582− 0.0418,

or
Pr(190 < Y < 2010) ≈ 0.9064,

or about 91%. We note that this estimate is bigger than the lower bound
of 67% obtained in part (a) using Chebyshev’s inequality, which to be
expected.

�


