Math 151. Probability Spring 2020
Tentative Schedule of Lectures and
Examinations
Date Topic
W Jan.
22 Introduction: A problem from statistical inference
F Jan.
24 Sample Spaces
M Jan.
27 σ-fields
W Jan.
29 σ-fields
(continued)
F Jan.
31 Probability spaces
M Feb.
3 Probability
spaces (continued)
W Feb.
5 Independent events and conditional
probability
F Feb. 7 Continuous
and discrete random variables
M Feb.
10 Cumulative distribution function
(cdf)
W Feb.
12 Probability density function (pdf)
F Feb.
14 Probability mass function (pmf)
M Feb.
17 Continuous random variable and
probability density function (pdf)
W Feb.
19 Review
F Feb.
21 Exam 1
M Feb.
24 Expectation of a random variable
W Feb.
26 Expectation of a function of a random
variable
F Feb.
28 Expectation of a function of a random
variable (continued)
M Mar.
2 Moments, variance and moment generation
function
W Mar
4 Joint distribution functions
F Mar. 6 Joint distribution functions (continued)
M Mar. 9 Marginal distributions
W Mar.
11 Independent random variables
F Mar.
13 Independent random variables
(continued)
M Mar.
16 Spring
Recess
W Mar.
18 Spring Recess
F Mar.
20 Spring
Recess
M Mar.
23 Review
W Mar.
25 Exam 2
F Mar.
27 Cesar
Chavez Recess
Date Topic
M Mar.
30 The Poisson distribution
W Apr.
1 The Poisson distribution (continued)
F Apr.
3 Limiting
distributions
M Apr.
6 Limiting
distributions (continued)
W Apr.
8 mgf convergence
theorem
F Apr.
10 Convergence in distribution
M Apr.
13 Convergence in Probability
W Apr.
15 The Central Limit Theorem
F Apr.
17 Applications of the Central Limit
Theorem
M Apr.
20 Applications of the Central Limit Theorem
(continued)
W Apr.
22 Random samples
F Apr.
24 Sampling distributions
M Apr.
27 Estimation
W Apr.
29 Review
F May 1 Exam 3
M May 4 Review
W May 6 Review
F May 15 Final
Examination