Assignment \#3

Due on Friday, February 14, 2020
Read Section 2.4, Example: Modeling the Spread of an Infectious Disease, in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

In Section 2.4 of the online class notes, the basic epidemiology model

$$
\left\{\begin{align*}
\frac{d S}{d t} & =-\frac{\beta S I}{N} \tag{1}\\
\frac{d I}{d t} & =\frac{\beta S I}{N}-\gamma I \\
\frac{d R}{d t} & =\gamma I
\end{align*}\right.
$$

of Kermack and McKendrick is discussed. The system in (1) is also an example of an SIR model. The quantity $S(t)$ denotes the number of individuals in a population of size N that are susceptible to acquiring a disease by coming into contact with infected individuals at time $t ; I(t)$ is the number of individuals in the population that have the disease and and can infect susceptible individuals at time $t ; R(t)$ is the number of individuals in the population that have recovered from the disease at time t and can no longer be infected. It is assumed that

$$
S(t)+I(t)+R(t)=N, \quad \text { for all } t \geqslant 0
$$

where N is a constant parameter.
Do the following problems

1. Give interpretations for the parameters β and γ in the SIR model in (1). In particular, give the units of β and γ.
2. Assume that at time $t=0$ all individuals in the population have the disease. Compute $I(t)$ for all $t \geqslant 0$ and $R(t)$ for all $t \geqslant 0$.
3. Explain how the SIR system in (1) can be transformed to the dimensionless system

$$
\left\{\begin{align*}
\frac{d s}{d \tau} & =-R_{o} s i \tag{2}\\
\frac{d i}{d \tau} & =R_{o} s i-i \\
\frac{d r}{d \tau} & =i
\end{align*}\right.
$$

Give an expression for R_{o} and provide an interpretation.
4. Explain why it suffices to analyze the two-dimensional system

$$
\left\{\begin{align*}
\frac{d s}{d \tau} & =-R_{o} s i \tag{3}\\
\frac{d i}{d \tau} & =R_{o} s i-i
\end{align*}\right.
$$

to understand the three-dimensional system in (2).
Use the second equation in (3) to deduce that, if $R_{o}>1$, then $\frac{d i}{d \tau}>0$ when s is very close to 1 . Explain why, in this case, an outbreak of the disease will occur.
5. Use the chain rule to show that the two-dimensional system in (3) implies the following first-order ODE

$$
\begin{equation*}
\frac{d i}{d s}=\frac{1}{R_{o} s}-1 \tag{4}
\end{equation*}
$$

Use separation of variables to solve the ordinary differential equation in (4) and give a formula for i as a function of s.

