Assignment \#5

Due on Friday, March 6, 2020
Section 3.1 on Modeling Traffic Flow in the class lecture notes at http://pages.pomona.edu/~ajr04747/.
Read Section 3.2 on Analysis of the Traffic Flow Equation in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

The Lighthill-Whitman-Richards Model. The following model for traffic flow on a one-lane road was proposed by Lighthill and Whitman in 1955 and by Richards in 1956.

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t}+g^{\prime}(u) \frac{\partial u}{\partial x} & =0 \tag{1}\\
u(x, 0) & =f(x),
\end{align*}\right.
$$

where $g(u)=u(1-u)$, and f is the initial traffic density.
Do the following problems

1. Suppose the initial traffic density, f, in the initial value problem (IVP) in (1) is given by

$$
f(x)=\left\{\begin{array}{cl}
1, & \text { if } x<-1 \\
\frac{1}{2}(1-x), & \text { if }-1 \leqslant x<1 \\
0, & \text { if } x \geqslant 1
\end{array}\right.
$$

(a) Sketch the characteristic curves of the partial differential equation in (1).
(b) Explain how the initial value problem in (1) can be solved in this case, and give a formula for $u(x, t)$.
2. Traffic Flow at a Red Light. Let the initial traffic density in the IVP (1) be given by $f(x)=1$ for $x \leqslant 0$ and $f(x)=0$ for $x>0$.
(a) Explain why, for this initial condition, the IVP (1) models the situation at a traffic light before the light turns green.
(b) Sketch the characteristic curves of the partial differential equation in (1).
(c) Explain why a shock wave solution does not develop at $t=0$.
3. Traffic Flow at a Red Light, Continued. Let the initial traffic density be as given in problem 2.
Look for a solution to the IVP (1) of the form

$$
u(x, t)=\varphi\left(\frac{x}{t}\right), \quad \text { for }-t<x<t, \quad \text { and } \quad t>0
$$

where φ is a differentiable function of a single variable.
Suggestion: Introduce a new variable $\eta=\frac{x}{t}$, and compute $\frac{d \varphi}{d \eta}$.
4. Traffic Flow at a Red Light, Continued. Let the initial traffic density in IVP (1) by given by f_{ε} defined by

$$
f_{\varepsilon}(x)=\left\{\begin{array}{cl}
1, & \text { if } x \leqslant 0 \\
1-\frac{x}{\varepsilon}, & \text { if } 0<x \leqslant \varepsilon \\
0, & \text { if } x>\varepsilon
\end{array}\right.
$$

for $\varepsilon>0$.
(a) Sketch the characteristic curves of the partial differential equation in (1).
(b) Explain how the initial value problem can be solved in this case, for each $\varepsilon>0$. Denote the solution by u_{ε} and give a formula for computing $u_{\varepsilon}(x, t)$, for $x \in \mathbf{R}$ and $t>0$, for any given value of $\varepsilon>0$.
5. Traffic Flow at a Red Light, Continued. Let f_{ε} be as defined in Problem 4, and u_{ε} be as computed in Problem 4.
(a) Compute $\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(x, t)$.
(b) Explain why the limit computed in part (a) gives a solution of the traffic flow equation for traffic at a red light before it turns green.

