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During mitosis chromosomes use a complex network of dynamic microtubules to find the cell equator

in preparation for division signals. The roles of cellular chemical signals in mechanisms driving mitotic

chromosomal movements are not well understood. In this paper we propose a mathematical model of

this process which incorporates a molecular scale model of kinetochore–microtubule interactions into a

negative feedback loop between spindle forces and local kinetochore biochemical reactions. This system

allows kinetochore biochemical reactions to control and coordinate chromosome movement thus

providing a direct connection between mechanical signals and mitosis chemical species. Our feedback

control model can recreate chromosome movement from prometaphase to anaphase in good agreement

with experimental data.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The movement of chromosomes to the cell equator is one of
the most striking mitotic events. Chromosome motility is
facilitated by the mitotic spindle, which consists of a complex
network of microtubules (MT) that nucleate from two poles. The
spindle machinery essentially lays out a system of tracks on
which chromosomes move. Mechanical linkage between chromo-
somes and microtubules is provided by proteinaceous structures
called kinetochores (Kt) (Cheeseman and Desai, 2008). Depending
on its attachment to the spindle a chromosome can be in one of
two states: monooriented if it is tethered to microtubules from
only one pole, or bioriented if connected to microtubules from
both poles.

In many vertebrate cells, monooriented and bioriented
chromosomes show oscillatory movements classified as ‘‘direc-
tional instability’’ (Skibbens et al., 1993). Oscillatory motility is
characterized by periods of motion at approximately constant
speeds marked by abrupt switches between motion directed
toward and away from a pole (Skibbens et al., 1993; Rieder and
Salmon, 1994). We refer to chromosome motion directed toward
the closest pole to which it is tethered as poleward motion and
motion away from the closest pole as antipoleward (AP) motion.
Toward and away from pole movements have been shown to be
primarily coupled to Kt associated microtubule (kMT) growth/
shortening by tubulin addition/removal at the attachment site
(Mitchison and Salmon, 1992). Typically a chromosome becomes
ll rights reserved.
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first monooriented and travels toward the pole from which the
kMT nucleated. Once close to this pole, it experiences directional
instability awaiting connections from the opposing pole. After
biorientation, motion preserves constant velocities with a bias
toward the spindle equator controlled by the duration of
poleward and antipoleward trips (Skibbens et al., 1993). At the
end of metaphase chromosomes align at the cell equator and
undergo further oscillations.

Poleward chromosome movement results from forces arising
at kinetochores. In turn, kinetochore forces could originate from
Kt coupling to depolymerizing microtubules or the pulling action
of minus-end directed motor proteins. Several motor proteins
such as dyneins, CENP-E are found at kinetochores (Cheeseman
and Desai, 2008). Even though molecular motor enzymes are
likely to contribute to kinetochore tethering to kMTs, their role in
generating motion is questioned on the basis that molecular
motor depletion in higher eukaryotes does not entirely hinder Kt/
kMT interactions (Kapoor et al., 2006), and their activity is
dispensable for chromosome motility in yeast (Tanaka et al.,
2007; Grishchuk and McIntosh, 2006). Therefore, it seems
reasonable to expect chromosome poleward movement to depend
on kinetochore coupling to kMT tip shortening rates.

Interactions between spindle MTs and chromosome arms
could be sufficient for antipoleward motion provided that
kinetochores are tethered to growing kMTs. Astral microtubules
push chromosome arms away from the poles toward the spindle
equator creating what are known as ‘‘polar ejection’’ forces
(Rieder and Salmon, 1994; Rieder et al., 1986). The interactions
between the spindle and chromosome arms at a given position
depend on the density of microtubules there. For equal densities
of microtubules emanating from each pole the polar ejection
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forces should balance half way, at the spindle equator. Therefore,
polar ejection forces provide spatial cues which guide chromo-
somes to the cell equator.

Since movement seems to depend on the coordination of the
forces exerted on kinetochores with kMT tip rates, a mechanism
for local Kt control that incorporates force dependent kMT tip rate
regulation could be sufficient to generate motion. Indeed,
local motility control at kinetochores is supported by evidence
that chromosomes in the same cell move autonomously with
uncoordinated directional switches (Skibbens et al., 1993; Rieder
and Salmon, 1994). Also, tension arising from stretching of sister
kinetochores during oscillations has been implicated in control-
ling transitions from poleward to AP motion (Skibbens et al.,
1993). More importantly, there is evidence for a kinetochore force
mediated regulatory mechanism based on experiments which
have identified Kt associated force sensing proteins that also
affect kMT polymerization/depolymerization rates (Sandall et al.,
2006; Gorbsky, 2004; Lampson et al., 2004; Bolton et al., 2002;
Murata-Hori and Wang, 2002). The details of how such a
biochemical-force regulatory machinery could work to control
chromosome motility are not well understood.

A previous model by Gardner et al. (2005) studied how
kinetochore force sensing affects chromosome motility in yeast
where kinetochores only bind a single MT. This study, however,
did not specify how kinetochores sustain attachment or address
any explicit mechanisms that would integrate mechanical tension
with velocity modulation at kinetochores. Recently Liu et al.
(2008) considered a chemical reaction mechanism for chromo-
some motility where velocity control was purely chemical with
no explicit load dependence or variation in attachment numbers
at each kinetochore. While kinetochores seem to operate on flat
load velocity curves with velocities insensitive to load variations,
any coupler motor would have to eventually adjust its response if
loads became too large. We reasoned that these effects could be
important in chromosome motility and thus sought to investigate
them explicitly in a chromosome motility model.

In this paper we develop a model of chromosome movement
where velocity is controlled by a negative feedback mechanism
between spindle forces and kinetochore localized force dependent
chemical reactions. For each chromosome attachment site we
build a model that describes the molecular mechanics of the
Kt/MT connection. Then, we use the corresponding load–velocity
relationships to predict system velocity in response to various
Kt loads and kMT tip rates. The proposed feedback mechanism
generates independent chromosome oscillations in the monoor-
iented case, and predicts congression and further oscillations in
the bioriented state, in good agreement with data.
2. Model

In this section we describe model assumptions and equations.
In Fig. 1 is shown a diagram of a chromosome and of all the

forces included in our model that affect its motion. We suppose
that chromosome movement is in the horizontal direction along a
one dimensional axis starting from the left pole (at x¼ 0) to the
right pole (at x¼ L). Furthermore, we assume that the motion is
viscous dominated (inertia can be neglected) so that

n
dxj

dt
¼
X

F; ð1Þ

where xj is the x-coordinate position of a chromosome arm, n is
the viscosity, and

P
F is the sum of all applied forces. Three types

of forces are included in our model. These are: (1) polar ejection
forces due to spindle MTs, (2) forces from each kinetochore
molecular motor bound to a MT, and (3) forces coming from
physical linkage with sister chromatids.

The individual forms for these forces are specified as follows.
Polar ejection forces are assumed to arise when MTs interact with
chromosome arms. Since these forces are thought to be micro-
tubule density dependent we model their effect using an inverse
square distribution law of the form fap=x2 ¼ kapAcc=x2 where Acc is
chromosome cross sectional area parallel to the equator and x is
chromosome distance from the pole (Rieder et al., 1986; Joglekar
and Hunt, 2002). The parameter kap is a force density term which
depends on the number of astral microtubules interacting with
chromosome arms.

Kinetochore motor forces are calculated from load–velocity
relationships which we derive in the next section. We allow a Kt
to bind several MTs, however, each binding generates a force
corresponding to a single molecular motor. The key motor model
result (described below) is that when attached, a motor generates
a load (or force) that depends on the motor velocity and the
balance of kMT tip polymerization and depolymerization rates,
identified by the depolymerization rate bj.

Finally, cohesin complexes provide physical connection be-
tween sister chromatids (Uhlmann, 2001) and are modeled by a
linear center spring.

Thus, the positions of the chromatids are governed by the
equations
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where xj (j¼ L;R) refers to the position of the chromatid facing the
jth pole (Fig. 1) with n;m the total number of attached right and
left kinetochore couplers, respectively. Fsj;i corresponds to the
forces coming from i th motor attached at kinetochore j, and Lk is
the cohesin spring relaxed length. For simplicity we have split the
anti-poleward forces on each sister chromatid in half.

The next important ingredient of the model are the Kt
chemical reactions. We propose that kinetochores contain a
sensor species S which is activated at a force dependent rate
subsequent to a microtubule binding a kinetochore. We assume
that if S grows above a threshold value, it promotes the
phosphorylation of a species A into Ap; if S decays below
threshold a phosphatase takes Ap into A. Possible candidates for
the sensor are components of the CPC complex and A could
correspond to Aurora B (AurB), a kinetochore specific kinase.
The members of the CPC complex are thought to first bind and
activate AurB via force dependent phosphorylation and subse-
quently the kinase (auto)phosphorylates to its fully active state
(Bolton et al., 2002; Sandall et al., 2006; Ruchaud et al., 2007).
Since the activation of AurB is not yet completely understood we
retain a simplified description where events are grouped into an
activation and phosphorylation reaction. Next, the species Ap
catalyzes in a threshold dependent way the phosphorylation of a
mitotic kinesin, Mc. A candidate for Mc is the kinesin-13 MCAK
which is a substrate of AurB at centromeres and is also the most
powerful microtubule depolymerase known to date (Gorbsky,
2004; Ems-McClung et al., 2007). In line with the observation that
phosphorylation of MCAK by AurB blocks its activity in vitro and
in vivo (Andrews et al., 2004; Wordeman et al., 2007) phosphory-
lated Mc (which we denote by Mcp) is inactive in our model. Fig. 2
illustrates a wiring diagram for the kinetochore chemical
reactions.
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Fig. 1. Diagram of model components. For ease of illustration we have increased the relative scale of a chromosome in the cell. Polar-ejection forces (shown as large

arrows) arise when the chromatids interact with microtubules that nucleate from two poles. These forces are directed away from each pole and thus create a centering

effect. Each kinetochore in our model is equipped with up to 20 couplers; for simplicity we have shown only two per sister kinetochore. Sister chromatids are connected by

a spring that maintains proper separation. The net polar ejection and spring forces exerted on a chromosome are read by each connected Kt motor that in turn responds

with forces and velocities from its load–velocity curve.
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Kinetochore Chemical Reaction Scheme

Fig. 2. Reaction diagram of the negative feedback loop between kinetochore loads

ðFsÞ and chemical species reactions. Kinetochore loads increase sensor production

(S), which in turn initiates a reversible two step phosphorylation cascade between

the kinase (A) and kinesin (Mc).
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In accordance with the above description, each kinetochore
sensor species is activated at a load adaptive rate
k
P

iFsj;iðdxj=dt;bjðtÞÞ, and decays with a constant rate m,

dSj

dt
¼ k
X

i

Fsj;i

dxj

dt
;bjðtÞ

� �
�mSj: ð4Þ

The two step phosphorylation cascade is modeled using Michaelis–
Menten dynamics,

dApj

dt
¼

kþA SjðATj�ApjÞ

KAþATj�Apj

�
k�A Apj

KAþApj

; ð5Þ
dMcj

dt
¼
�k�MApjMcj

KMþMcj
þ

kþM ðMTj�McjÞ

KMþMTj�Mcj
: ð6Þ

with MTj ¼McjþMcpj, ATj ¼ AjþApj, the total concentration of
species Mc and A at kinetochore j. KA, KM are the Michaelis
constants for the reactions. The rates k�A , kþM characterize phospha-
tase kinetics whereas kþA Sj, k�MApj are chosen so that maximum
kinase velocities are reached when S and Ap are at their highest
values. A similar cascade has been shown to cause limit cycle
behavior for the cyclin-cdc2 kinase mitotic oscillator in Goldbeter
(1991). The key characteristic of this cascade is that Ap and Mc show
zero-order ultrasensitivity (i.e the reactions display sigmoidal
switch-like signal-response curves) so that response increases
continuously with signal strength and is fully reversible (Goldbeter
and Koshland, 1981; Tyson et al., 2003).

Further, we assume that the microtubule depolymerization
rate bj at a given kinetochore is related to the amount of Mc
available through the linear relationship

bjðtÞ ¼
bmax�bmin

MTj
Mcjþbmin: ð7Þ

Notice that the depolymerization rate bj feeds back into the motor
forces through the Fsj;iðdxj=dt;bjÞ term of Eqs. (2) and (3) to report
chemical species levels into the force balance calculation. Thus,
we have feedback between chemical reactions and kinetochore
forces.

Finally, we note here that in general our model is a system of
eight nonlinear differential equations, but when one sister
kinetochore is not attached (monooriented case) this system
reduces to five equations since one set of chemical equations has
trivial solutions.



ARTICLE IN PRESS

B. Shtylla, J.P. Keener / Journal of Theoretical Biology 263 (2010) 455–470458
2.1. Load velocity relationship for kinetochore diffusive motors

In this section we describe the key equations which were used
to determine the load–velocity relationships for the biased
diffusion motor (a more detailed description of this model is
provided in another article).

Since the biological details of the Kt/MT interface are not
completely understood, several theoretical models with various
Kt attachment strategies have been proposed (Molodtsov et al.,
2005; Efremov et al., 2007; McIntosh et al., 2008). One of the first
theoretical treatments was by Hill (1985) who showed that biased
thermal diffusion of Kt binders on a tethered MT lattice is
sufficient to support continuous loads while keeping attachment
to both growing and shortening MTs. Hill’s molecular motor
consisted of a rigid ‘‘sleeve’’ construct equipped with several weak
MT binding sites. The sleeve structure is free to diffuse on the
kMT lattice while the system seeks to minimize its energy by
occupying as many sleeve binding sites as possible. Biased motion
of the motor occurs because of depolymerization of the MT tip.
For appropriate binding energies and sufficiently fast diffusion,
the molecular motor is capable of bidirectional movement with
velocities that depend on MT tip growth/shortening rates (Hill,
1985; Joglekar and Hunt, 2002). In his original treatment Hill
required that the binding sites be arranged in a rigid narrow
sleeve. This configuration does not allow for the flaring of MT ends
that is seen during depolymerization. Nonetheless, the funda-
mental idea of biased diffusion can be incorporated into any
arrangement of binding sites that are physically linked together
(Powers et al., 2009).

In this paper we propose that coupling is accomplished by a
modification of a diffusive Hill-type motor, the components of
which are illustrated in Fig. 3A. The assumptions used to construct
the motor model are as follows.

We assume that a motor is composed of a collection of fibers
extending from the kinetochore with multiple binding attach-
ments that can bind to sites on the MTs. The fibers are assumed to
be sufficiently flexible so that they can attach to flaring
microtubules. A coupler binder is also assumed to experience
thermal motion (diffusion) on the lattice of an attached MT.
Notice that since the binders are physically linked to each other
on the fibers, it follows that the coupler experiences 1D diffusion
on the polymer lattice.

Horizontal displacement for this motor is measured with
respect to an internal motor frame of reference. The motor
position variable, y, marks the distance between the polymer tip
and the coupler end distal to the kinetochore plate. Thus, the
position axis here starts at the coupler entry point ðy¼ 0 nmÞ
and extends to the Kt plate ðy¼ 50 nmÞ, as shown in Fig. 3A.
The reason for this new frame of reference is that motor dynamics
are directly dependent on the amount of overlap between the
polymer and the coupler and not the specific chromosome
position in the cell.

To characterize the binding interactions between the coupler
and the polymer, we use an explicit energy landscape function,
CðyÞ. We suppose that each motor binder can weakly bind to a
single monomer (i.e. there is a single binder binding site on each
monomer). We position the binding sites so that when the
polymer is fully inserted there are 65 occupied binding sites
spread along 40 nm of the polymer. In agreement with Hill (1985)
for an MT with 13 protofilaments with 8 nm long monomers, the
binding sites are placed d¼ 8=13 nm apart on the y-axis.

We now describe the structure of the potential well function
(the exact expression of CðyÞ used here is given in the Appendix).
The key assumption for potential well construction is that its
shape should be such that additional binder attachments are
energetically favored for the system. More specifically, for each
new binding interaction established between the binders and the
polymer, the system free energy is lowered by the amount ‘‘ �a’’ ,
see Fig. 3A. On the other hand, in order for thermal motion to
result in repositioning of the coupler relative to the polymer,
existing bonds need to break. Bond breaking is not energetically
favorable and thus imposes a potential barrier for each bond for
movement, which we denote by ‘‘b’’ in the well, Fig. 3A. During
insertion more bonds are established so that system free energy
decreases in multiples of a, however, more bonds must also be
broken so that the potential barrier increases in multiples of b.
This produces a corrugated well CðyÞ with peaks and troughs
varying linearly as y increases with the net effect of a drift term
that biases thermal diffusion of the polymer inside the coupler.

But what happens if the polymer tip moves either by diffusion or
polymerization past the last coupler binder? At this position there is
no gain for the system to bias thermal motion in either direction since
further insertion into the coupler does not lower the free energy-all
possible binding sites are occupied. Nonetheless, if the coupler moves
in this region it has to cross the potential barrier associated with
breaking all bonds. Consequently, the potential well function CðyÞ
loses its tilt and becomes periodic past the last binder position at
y¼ 40 nm as shown in Fig. 3A. The values for a, b are chosen small so
that binding is weak and the barriers are low. This is done in order to
allow for diffusion to easily relocate the MT tip to a lower energy
state. We note here that motor behavior is not very sensitive to the
specific values of the well parameters as long as the activation
energies are kept much lower than the binding free energy.

Spindle forces acting on a chromosome as well as spring forces
due to cohesins create mechanical stress on kinetochores
producing load (F) on the motor. With our sign convention,
F40 pushes on a kinetochore to oppose poleward motion or
equivalently pulls the polymer outside the coupler, whereas Fo0
favors polymer insertion or poleward motion.

Finally, the tip of the inserted polymer is dynamic and can
grow or shorten with prescribed rates that vary with the position
of the tip relative to the kinetochore. A plot of the rates is shown
in Fig. 3B. We assume that the depolymerase MCAK is enriched at
the coupler end proximal to the kinetochore plate. Hence, we
choose a depolymerization rate that depends on the position of
the kMT tip relative to the motor (it varies from a basal value b0 to
a maximal value of bj) and keep the polymerization rate constant
ða0Þ, independent of tip position.

In the viscous-dominated limit, the motor system can be
modeled with the forward Chapman–Kolmogorov equation,

@pðy; tÞ

@t
¼

@

@y

C0ðyÞ
n þ

F

n

� �
pðy; tÞ

� �
þaðy�dÞpðy�d; tÞ

þbðyþdÞpðyþd; tÞ�ðaðyÞþbðyÞÞpðy; tÞþD
@2

@y2
pðy; tÞ; ð8Þ

where pðy; tÞ is the probability density function for y, the relative
MT tip position. D is the kinetochore diffusion coefficient, n is the
effective kinetochore viscosity and aðyÞ, bðyÞ are position depen-
dent polymerization and depolymerization rates for the kMT tip.
Notice that Eq. (8) includes jump terms coming from the addition
or removal of monomers of size d in addition to diffusion and
drift. This equation is similar to a model of a polymerization
ratchet proposed by Peskin et al. (1993) with the difference that
here we have an explicit binding energy potential CðyÞ and the tip
depolymerization rate is position dependent.

For a given depolymerization rate bj and reasonable loads, a
motor sustains attachment to an MT. Since the polymer tip is
constantly growing/shortening, attachment produces movement
of the motor with respect to the x-axis. Notice, however, that so
far, all the coupler equations have been written in terms of the
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Fig. 3. (A) Diffusive coupler diagram. Several weak kMT lattice binding sites diffuse on an inserted microtubule with a dynamic tip. The energy of binding is represented by

a potential well function CðyÞ which creates a bias for increased overlap between the kinetochore filaments and the polymer. Motor loads (F) coming from polar ejection

forces and the spring oppose the potential well bias for insertion. (B) The polymerization/depolymerization rates for the tip of an inserted MT are position dependent

functions. The polymerization rate is constant whereas the depolymerization rate is a step function that varies from b0 to bj. bj depends on the concentration of active

MCAK at the kinetochore. (C) Load–velocity curves for the diffusive couplers and their respective linear approximation. For the diffusive motors load velocity curves for are

mostly flat. The linear load–velocity curves have the same quantitative behavior as the nonlinear load–velocity curves when the rate bj varies. The rate bj for the linear

curves was chosen to give a good fit to the nonlinear case; all other rate parameters are the same. In this plot �v40 denotes poleward or depolymerization-driven motion,

whereas �vo0 denotes antipoleward or polymerization-driven motion.
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relative position variable, y. Yet, in order to incorporate this motor
into the cell we have to measure its movement with respect to the
cell’s frame of reference, x. The average velocity of an attached
motor with respect to the x-axis is calculated as the sum of the
average velocity of movement of the MT tip given by the balance
between a and b, plus the average velocity of movement of the Kt
relative to the kMT tip,

vðF;bjÞ ¼
d

dt
/xKS¼

d

dt
/xpSþ

d

dt
/yS;

¼ d
Z
ðaðyÞ�bðyÞÞpðy; tÞdyþ

Z
yptðy; tÞdy; ð9Þ

where xK , xP are the Kt plate and MT polymer tip positions,
respectively, in the x frame of reference.

For our chosen parameters, the attractive forces coming from
the potential well create a metastable state in which the position
of the tip relative to the coupler is fixed. This implies that at
steady state the coupler moves (relative to the x-axis) with an
average velocity that equals the balance of kMT tip rates. If we let
psðyÞ be the corresponding steady state probability density (which
is obtained by solving Eq. (8) with left hand side set to zero with
appropriate boundary conditions), the velocity expression reduces
to

vðF;bjÞ ¼ d
Z
ðaðyÞ�bðyÞÞpsðyÞdy: ð10Þ

We use Eq. (10) to determine load–velocity curves for the
motors. Two representative load–velocity curves are shown in
Fig. 3C (note that we plot �vðF;bjðtÞÞ in the y-axis of these graphs).
The key feature of the load–velocity curves is the wide range of
loads for which the velocity is nearly constant. This arises due to
the dependence of the steady state distributions on the force
term, F. In Fig. 4 we show the numerical solutions shown as
normalized histograms representing the steady state distributions
calculated for various amounts of load on the motor. For ease of
visualization the microscopic corrugated well effects on the
histograms have been filtered out to highlight the macroscopic
behavior of the system when the value F is varied. Note from
Eq. (8) that the load term F can act directly to either enhance
or diminish the well force effect C0ðyÞ depending on its sign.
Consequently, the steady state distribution for the position of the
polymer tip, psðyÞ experiences shifts on the y-axis as a result of
changes in the load on the motor. However, notice from Figs. 3C
and 4 that the velocity does not change as long as the values of the
tip rates in this shifted position remain unchanged. This is due
to the fact that the velocity of this motor is determined by the
balance of MT growth/shortening rates at the equilibrium tip
position. Effectively, the coupler does not change its velocity
unless the loads are such that the tip is in the regions where the
balance of rates changes. Thus, as in Hill (1985), our model
provides a mechanism by which the coupler responds to a wide
range of loads with constant velocities.

In Fig. 4 observe that the polymerization rate has to drop to
zero when the distance between the polymer tip and the Kt plate
is less than d, since monomers cannot be added unless there is
enough space to do so. This imposes a transition to higher motor
depolymerization velocities in the load–velocity plot as the
polymer is pushed with more force ðFo0Þ against the plate.
This is because it is harder for the MT to add monomers against a
large pushing load—however, depolymerization still proceeds
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Fig. 4. Steady state distributions for various system loads, F, compared with kMT

tip growth/shortening rates. For each force value, Eq. (8) is solved numerically and

the histograms (smoothed to eliminate microscale details) are plotted (solid lines).

For these simulations bj ¼ 100 s�1, and the remaining parameters are the same as

in Table 1. MT tip polymerization/depolymerization rate functions are shown with

dashed lines.

Table 1
Parameter values.

Parameter Description Value

L Cell diameter 40mm (Skibbens et al., 1993)

n Effective viscous drag coefficient 6 pNs=mm (Joglekar and Hunt,

2002)

k Sensor response rate to load :02 nM=pN s (estimated)

m Sensor decay rate :05 s�1 (estimated)

k�M ¼ kþA Maximum kinase reaction

velocity
:1 s�1 (Tyson et al., 2003)

kþM ¼ k�A Maximum phosphatase reaction

velocity

:2 nM=s (Tyson et al., 2003)

KA ¼ KM Michaelis rate constants :01 nM (Tyson et al., 2003;

Goldbeter, 1991)

Lk Cohesin spring relaxed length 1000 nm (Waters et al., 1996)

kf Cohesin spring coefficient :1 pN=nm (Joglekar and Hunt,

2002)

a0 Rate of tubulin subunit addition 80 s�1 (Joglekar and Hunt,

2002)

b0 Basal rate of tubulin subunit

removal
27 s�1 (Joglekar and Hunt,

2002)

bmax Max. rate of removal of tubulin 130 s�1 (estimated)

bmin Min. rate of removal of tubulin 27 s�1 (estimated)

a Free energy of binding 2:6 kBT (Hill, 1985)

b Unit activation barrier :01 kBT (Powers et al., 2009)

D Coupler diffusion coefficient 690 nm=s2 (Hill, 1985)

Fmax Linear load–velocity curve

constant force factor

18 pN (estimated)
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unaffected (see Fig. 3C). Therefore, in this force regime the motor
effectively responds like a polymerization ratchet in agreement
with the results of Peskin et al. (1993). On the other hand, when
the pulling forces ðF40Þ are significant, parts of the steady state
distributions localize in regions where the polymerization rate is
greater than the depolymerization rate. This produces a decline in
depolymerization velocities in the load–velocity curves when
bj4a0 since in Eq. (10) there is a contribution in the velocity
integral for regions where aðyÞ4bðyÞ. Of course, if the pulling
loads increase too much the motor breaks down with the polymer
pulled out of the motor. Thus the pulling force range in the
velocity calculation must be restricted accordingly.

Finally, we note that the expression in Eq. (10) cannot be
evaluated to find explicit relationships between motor velocity v,
the rate bj and load F. Furthermore, for Eqs. (2) and (3), we need
the load as a function of velocity and bj, and these equations are
implicit rather than explicit equations for chromosome velocity.
We can greatly simplify the analysis of our model by replacing the
diffusive motor load–velocity curves coming from solutions of
(8)–(10) with explicit relationships that retain key characteristics
of the motor. Thus, in addition to solving the full model
(numerically) we also explore the behavior of the model when
the motor load–velocity relationships are given by the linear
equation,

Fsj;iðvj;bjÞ ¼
2Fmax

dðb0�bj�a0Þ
vj�

dðbjþb0�a0Þ

2

� �
: ð11Þ

A comparison between the load velocity curves of the biased
diffusion couplers and the linear Eq. (11) is shown in Fig. 3C.
Notice that the linear curves show the same qualitative behavior
as the numerically determined diffusive coupler curves for bj

between bmin and bmax.
3. Results

We numerically solved the model equations to track chromo-
some positions and chemical species levels as functions of time.

For the simulations, local kinetochore species concentrations
were scaled by Sy and normalized Sy ¼MTj ¼ ATj ¼ 1. Kinetic and
binding parameter values were either taken directly from the
literature or estimated from experimental data (see Appendix).
A complete list of model parameters is shown in Table 1. For the
simulations of the system with linear load velocity curves the
variables were rescaled and the results are presented in terms of
wj ¼ xj=L, sj ¼ Sj=Smax, aj ¼ Apj=AT , mj ¼Mcj=MT , t¼ t=T .
3.1. Feedback with diffusive couplers predicts oscillations for

monooriented chromosomes

We first calculated solutions for kinetochores equipped with
up to 20 attachments at each kinetochore as suggested by data
from Newt Lung cells (Skibbens et al., 1993), then we repeated our
calculations with the linear load–velocity curves and analyzed
model behavior.

The plots in Fig. 5 display model solutions for the position of
each sister chromatid, sensor, load per motor, and kinase/kinesin
levels as a function of time. For these solutions only the left
kinetochore is allowed to attach motors to kMTs, i.e., the
chromosome is monooriented.

In Fig. 5A we show the simulated motion of a chromosome
with the left chromatid positioned initially at x¼ 15mm. The left
kinetochore is allowed to establish 1–2 new attachments every
100 s. Independent of the initial chromosome position, the model
predicts an initial approach to the pole and then movement with
very regular poleward and antipoleward excursions with speeds
� 1:8mm=min in each direction (amplitude � 2mm, period
� 3 min) matching experimental observations in Newt Lung cells
(Skibbens et al., 1993).

The characteristic constant velocity poleward and antipole-
ward excursions seen in our simulations are a consequence of the
flatness of the load velocity curves on which kinetochore diffusive
couplers operate. A load increase results in a shift in the maximal
probability for the position of the tip inside the coupler. However,
if kMT dynamic rates in this shifted position are unchanged
chromosome velocity remains constant. On the other hand, if the
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depolymerization rate ðbjÞ is altered, coupler load–velocity curves
shift so chromosome velocities change. In our case since Mc
controls the depolymerization rate bj and it quickly switches
between either zero or fully active levels, the couplers essentially
operate on two load–velocity curves: one where the depolymer-
ization rate is at its highest (depolymerizing movement) and the
other where the depolymerization rate is at its basal level
(polymerizing movement), see Fig. 3C.

In Fig. 5 C we plot the load felt by each attached left Kt motor
as a function of time. The addition of new attachments
redistributes loads by lowering the burden on each coupler.
However, this does not affect motion as long as load variations
remain within the flat region of the load–velocity curves. This
implies that all motors respond with the same velocities despite
individual load variations. Furthermore, since new attachments
do not affect total load (and thus the local chemical reactions),
the model predicts regular monooriented oscillations that are
insensitive to the number of attachments at a kinetochore.

As can be seen from the sensor species concentrations plotted
in Fig. 5B, ‘‘directional instability’’ for monooriented chromo-
somes is a direct byproduct of sensor species oscillations. Sensor
species oscillations occur due to the change in the balance of
forces as the chromosome changes position. The oscillations in
sensor levels turn on or off the bicyclic cascade switch, as shown
in Fig. 5D. If a kinetochore moves to a location where the load it
feels increases, then the sensor reaches its threshold value Sy
faster. Once above threshold, S levels force A to fully activate by
mediating its phosphorylation into Ap which subsequently turns
off the depolymerase Mc. The time necessary for Ap to build up
and Mc to shut down is the time allocated for direction switch in
our model. Consequently, the kinetic parameters for kinases
and phosphatases are chosen to match the sharp chromosome
directional changes (� 6 s Skibbens et al., 1993). When Mc is
inactive the diffusive coupler is in polymerizing state driving
antipoleward motion, which causes the couplers to feel less load,
S decays below Sy and the phosphorylation cascade switch is
reversed so that monooriented directional instability is estab-
lished.

It should be noted that the reaction cascade we propose here
exhibits threshold dependent switching behavior. Oscillations are
not sustained if Ap and Mc activation curves lack the necessary
zero order ultrasensitivity, which is controlled by Km values as
predicted in Goldbeter and Koshland (1981). In Fig. S1 we plot
chromatid positions for different values of phosphorylation
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reaction kinetic parameters. The model predicts monooriented
chromosome oscillations for a wide range of parameter values
provided there are sufficiently sharp thresholds in the activation
of the kinase and kinesin species. It should be noted that it is
likely that more steps are involved in the cascade than our
minimal representation. Increasing the number of cascade steps
could produce sharper thresholds in activation since sensitivity is
amplified in subsequent cycles (Goldbeter and Koshland, 1981)
resulting in a possible increase of oscillation robustness.

For the system with linear load velocity curves we obtain
similar monooriented oscillations. In Fig. S2 we plot the system
solutions for the position and kinetochore chemical levels of a
monooriented chromosome with linear load–velocity curves.
The system produces monooriented oscillations independent of
the initial chromosome position, with some slight differences in
movement arising from the shape of the load–velocity curves.
As expected, velocities are not constant, this is especially notice-
able in the initial left pole approach while motor loads increase.
The variation of velocity becomes apparent when the sensor
production rate is slightly decreased, as shown in Fig. S3. Also,
in contrast to the diffusive coupler motors, for the system with
linear load–velocity curves the addition of new connections
affects the shape of monooriented oscillations since motor load
variation imposes changes in velocity. Clearly, the diffusive
coupler model is a much more adequate model for the coupling
mechanism, although the linear load–velocity approximation
retains qualitative model behavior for the monooriented case.

In conclusion, our model suggests that monooriented oscilla-
tions could be the result of a local kinetochore load sensor driving
fast switch-like phosphorylation cascades.
3.2. The feedback mechanism predicts congression for

bioriented chromosomes

In Fig. 6 we show the model solutions for which the right
kinetochore is allowed to accumulate attachments so that the
chromosome becomes bioriented.

In Fig. 6A is shown the simulated motion of a chromosome
which is initially monooriented (7 left couplers attached) and
becomes bioriented at t¼ 900 s when one right kinetochore
coupler is engaged. Observe that the chromosome immediately
changes direction and follows the right (leading) kinetochore with
persistent motion away from the pole covering distances of
� 10mm in a few minutes, in accordance with experimental
observations in Skibbens et al. (1993).

A comparison between sister kinetochore positions and
chemical levels (Fig. 6B, D) shows that the movement of sister
chromatids follows the evolution of their respective chemical
reactions. At the onset of biorientation, coupler motors at each
sister kinetochore feel forces in opposing directions. The right
kinetochore motor experiences a strong ejection gradient which
pushes the kMT tips inside the coupler so that the right coupler
responds with right pole directed (poleward) motion. The left
couplers, on the other hand, feel large opposing AP loads which
result in antipoleward velocities slightly smaller in magnitude
than right coupler velocities. This difference produces immediate
stretch on the center spring which increases the spring forces on
both motors. However, only the left motors feel a significant
pulling load and sensor increase since the AP gradient absorbs the
spring force effects on the right coupler, as seen in Fig. 6C. After
the initial spring force spike, if the AP force gradient remains
strong then right kinetochore motors continue to respond with
poleward velocities, whereas the left kinetochore motors keep
high sensor levels due to high loads. Consequently, both motors
move with almost the same magnitude velocities toward the
equator according to load velocity relationships. It is important to
highlight here that congression in our model is insensitive to the
amounts of trailing kinetochore sensor at the time of biorientation
(figures not shown).

In fact, the distance traveled by a congressing bioriented
chromosome depends on the strength of the ejection forces. In
Fig. S4 we show model solutions for high and low levels of polar
ejection force gradients. We observe that for very weak AP forces
a bioriented chromosome experiences oscillations close to the
poles, essentially failing to congress. This is because the trailing
kinetochore does not feel enough load to keep S from going below
threshold and it attempts poleward trips at the onset of
congression. However, once ejection forces build up, AP move-
ment persists allowing for fast equator approach, as seen in
experiments. This implies that the AP gradient strength directs
congression by controlling the length of antipoleward trips and
not velocity differences, in good agreement with observations in
Skibbens et al. (1993).

A comparison of attached motor numbers on each sister
chromatid from Fig. 6C shows that congression is achieved
despite the trailing kinetochore having far more motors attached
than the leading one. Our simulations show that for the same
values of the AP gradient, increasing the number of trailing
kinetochore attachments does not significantly affect congression.
More attachments on the trailing kinetochore produce more
initial resistance to congression followed by sharp spring
responses. However, if the AP forces can quickly counteract
spring forces and keep sensor levels sufficiently high the trailing
kinetochore moves antipoleward and congression progresses
independent of the number of attachments. Therefore, the model
suggests that the AP gradient is necessary and sufficient to assign
a leading kinetochore independent of attachment numbers.

Interestingly, chemical species reactions show that sister
kinetochores have very different levels of phosphorylated Mc
during congression as seen in Fig. 6D. Our simulations show a
situation where the leading kinetochore always has all Mc active
(unphosphorylated) whereas the trailing one has little active Mc
(all phosphorylated) as it approaches the equator. This model
behavior is particularly interesting since experiments have shown
that Aurora B inexplicably phosphorylates MCAK asymmetrically
across centromeres showing an accumulation of active MCAK at
the leading kinetochore during congression (Andrews et al., 2004;
Kline-Smith et al., 2004). It has been proposed that congression
could be mediated by asymmetries in active MCAK levels
(Andrews et al., 2004; Gorbsky, 2004). Nonetheless, there is to
date no clear mechanistic explanation as to why such differences
in MCAK activity levels across kinetochores may occur. Our model
predicts that asymmetries could be the result of inequalities in
the dynamics of kinetochore chemical reactions caused by AP
induced load differences across sister kinetochores.

Substitution of the load–velocity curves with linear functions
does not change system behavior significantly during congression.
In Fig. S5 we show the simulated chromatid motion and
respective chemical species levels of a chromosome that becomes
bioriented at t¼ 60. Even though a chromosome congresses to the
equator, linear load–velocity curves can cause early onset of right
kinetochore congression opposing trips (seen in Fig. S5A). This
arises due to the fact that in the linear load–velocity curve case,
direction reversal is achieved for different loads as compared to
the nonlinear case (i.e different x-intercept for each curve in
Fig. 3 C). Thus, when AP forces weaken closer to the equator,
smaller amounts of resistive spring forces cause the right motors
to reverse into polymerizing motion than in the nonlinear case. In
summary, the shape of the load–velocity curves affects the speed
of congression through its triggering of resistive poleward trips
during equatorial approach.
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3.3. Post congression, bioriented chromosomes oscillate with smaller

amplitudes, higher frequencies and can pause

In Fig. 7A, 7C, 7E, 7G are shown model solutions for times after
the initial congression has occurred.

Once a bioriented chromosome moves close to the equator the
AP force gradient weakens and center spring forces become
significant. Because of the load feedback response, as a chromo-
some gets closer to the equator, the motors prolong the
congression-opposing states during which they test the AP
gradient. Bioriented oscillations take place only if the AP gradient
is weak enough for the motors to directly oppose each other so
that both kinetochore sensors increase above threshold (intra-Kt
tension takes over spatial cues). Sensors fully synchronize at the
equator where there is no AP gradient bias, as seen in Fig. 7C.
Bioriented oscillations tend to be in-phase when there is a
significant difference in the numbers of couplers engaged at each
kinetochore, shown in Fig. 7A. These in-phase movements are due
to the difference in loads as seen in Fig. 7G and subsequently the
coupler velocity response of each sister chromatid. If the number
of attached motors at each kinetochore is the same they all pick
equal speeds for equal loads. So, as the differences in velocities
decrease, kinetochores are forced into out-of-phase trips driven
by sensor synchronization at the equator followed by periods
of no movement where both kinetochores are polymerizing
slowly against the center spring (neutral). In our simulations,
the maximal amplitude of oscillations for bioriented in-phase
and out-of-phase oscillations is � 1mm and the period is
� 121:5 min. The amplitudes of these oscillations are smaller
than the ones reported in Skibbens et al. (1993), this is due to our
choice of kMT polymerization and depolymerization rates. With
higher kMT tip rates the amplitudes increase to closer match
experimental observations.

In Fig. 8 system solutions are displayed for a bioriented
chromosome at the equator with linear load–velocity curve
motors. The feedback mechanism in this case produces nearly
identical bioriented oscillations, shown in Fig. 8A, as simulations
in Fig. 7A for the fully nonlinear coupler.

In conclusion our model predicts oscillations around the cell
equator for bioriented chromosomes. The phase relationship between
sister kinetochores seems to depend on the number of attachments
established on each kinetochore. Unequal numbers of attachments
produce in-phase oscillations similar to the ones seen in experiments.
For equal numbers of attachments phases of no motion are seen,
similar to those seen in experiments during bioriented oscillations but
not during monooriented oscillations in Newt lung cells (Skibbens
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Fig. 7. Bioriented chromosome oscillations and anaphase transition. (A and B) After congression bioriented chromosome oscillations are sustained at the equator when the

sensor is properly localized. (C and D) Sensor species levels during oscillations and after sensor and spring removal. (E and F) Chemical species levels during bioriented

chromosome oscillations at the equator. (G and H) Loads per motor and attached motor numbers for each kinetochore. In panel B, D, F, H reaction parameters change as

follows: (1) t¼ 2500 s sensor decay rate increases from m¼ :05 s�1 to 5 s�1 and oscillations cease with the chromosome stretched and precisely centered. (2) t¼ 2700 s the

cohesin spring is removed with kf ¼ 0 allowing for chromosome segregation.
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et al., 1993). Unequal numbers of attachments on sister kinetochores
produce oscillations centered slightly away from the equator.
However, when a chromosome steers too far from the equator AP
centering cues become stronger than intra-centromeric tension which
decreases sensor synchrony and causes quick trip interruptions that
bias position toward the equator. This implies that attachment
number variation can slightly offset centering until the chemical
reactions can build a response to the AP gradient that points the
chromosome back to the equator. Nonetheless, once the attachment
numbers become nearly equal on each side, the chromosome always
returns to oscillating around the equator independent of the strength
of the polar ejection gradient.
3.4. Metaphase/anaphase transition

So far we have discussed model results with the assumption
that the chemical species included in the feedback remain
localized at kinetochores. However, if the sensor species is
interpreted as part of the chromosome passenger complex (CPC)
then we should take into account that the position of this complex
varies depending on the particular stage of cell division (Ruchaud
et al., 2007). Since we integrate the action of this chemical species
in movement control, we can use our model to test whether
variation in species localization agrees with movement pheno-
types observed in mitotic cells.

Once all chromosomes are properly aligned at the equator,
AurB-INCENP relocates from centromeres to the spindle midzone
microtubules due to Cyclin B degradation upon anaphase-start
signal release (Murata-Hori et al., 2002). We can investigate the
effects of this relocation in our model by allowing for quick sensor
removal, i.e. by increasing the decay rate m. In Fig. 7B, D, F, H we
show model solutions extended after equatorial alignment as a
function of time while model parameters are varied sequentially. In
Fig. 7B we show a plot of the position of each chromatid where at
time t¼ 2500 s the sensor decay rate is significantly increased.
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the cohesin spring is removed by setting the parameter g4 ¼ kf =nm¼ 0 allowing for chromosome segregation.
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Accordingly, oscillations stop and the chromosome is precisely
positioned at the equator with high centromeric stretch. This
behavior is explained by Fig. 7D, F that show sensor levels below
threshold and low kinase activity. The kinetochores thus pull
against the polar ejection gradient until their couplers reach their
stall loads. Thus, fast removal of sensor predicts a stretched
conformation as a precursor to anaphase pole migration. However,
as can be seen in Fig. 9 where we have plotted solutions of the
system with moderate m rate, if removal is not very fast the system
experiences oscillations with high centromeric stretching. In cells
depleted of centromeric MCAK both stretch and oscillations
were observed at the onset of anaphase (Kline-Smith et al.,
2004). We predict that both these experimental observations
could be the result of different levels of feedback disassembly at
kinetochores.

The final step for transition from metaphase to anaphase
requires the protease separase to cleave a cohesin subunit
allowing for sister chromatid separation (Uhlmann, 2001). There
is evidence that transition into anaphase poleward movement
might not only entail the breaking of the linking cohesins but
also proper modulation of kinetochore chemical reactions.
The reintroduction of Cyclin B in cohesin cleaved chromosomes
can cause AurB-INCENP to not relocalize producing interesting
chromosome movement phenotypes such as oscillations around a
pseudometaphase plate (Parry et al., 2003). Further, experiments
that vary Cyclin B doses in cells show that a separated chromatid
can either oscillate or experience stand-still behavior at different
locations in the cell depending on polar-ejection strength (Wolf
et al., 2006). Both experiments seem to indicate that kinetochore
reactions (more specifically AurB removal) control anaphase
movement phenotypes. We can easily test whether our model
captures these experimental observations.

In Fig. 7B we show the movement of a bioriented chromosome
after cohesin removal ðkf ¼ 0Þ at time t¼ 2700 s. Notice that
poleward movement is sustained upon separation and reaction
disassembly. However, if the sensor is not quickly removed
oscillations occur due to the feedback response to load. In Fig. 9
we have plotted the movement of a chromosome which under-
goes separation when the removal of the sensor is slow; close to
the poles oscillations persist. Our model produces both stand still
and oscillatory movement at the equator for separated chroma-
tids if the polar ejection forces are kept strong (figures not
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shown). If the feedback is partially operating after separation,
oscillations persist close to the pole for weak polar ejection forces,
or at a pseudometaphase plate if the force gradient is strong.
If the removal of the sensor is complete then the chromatid
loses oscillatory behavior and moves to a new equilibrium
position where the motors stall, which can be either close to
the pole or the equator depending upon the strength of the
polar forces. Therefore, our results indicate that anaphase
transition for chromosomes is not purely a force balance problem.
Indeed, our model predicts that persistent anaphase poleward
movement has a strong chemical component, which when
interpreted as feedback disassembly, agrees well with experi-
mental observations.

The relocation of the sensor produces the same stretching
effects for the system with linear load–velocity equations as for
the nonlinear load–velocity curves and finally the removal of the
spring causes persistent poleward trips. In panel B of Fig. 8, model
parameters are changed so that at t¼ 160 there is faster sensor
removal and at t¼ 170 the cohesin spring is removed. Just as in
the nonlinear load–velocity curve motor case, if the sensor is not
removed quickly enough the chromatids oscillate close to their
respective poles after segregating (figure not shown).
In conclusion, the shape of the load–velocity curve does not
significantly change the behavior of the negative feedback system.
As long as the couplers can move with velocities that depend
upon kMT tip rates, the negative biochemical feedback mechan-
ism produces monooriented oscillations, congression, bioriented
oscillations and proper segregation.
3.5. Feedback response to noise

Cells are noisy environments so a more realistic model of
chromosome movement has to take into account some stochastic
effects. Since the linearized system retained all the features of the
implicit nonlinear model, we can easily explore the effects of
noise on the system by perturbing the velocity equations
(Eq. (10)) with Gaussian distributed noise terms xiðtÞ (see
Appendix). In Fig. 8C, which shows the position of the chromatids
of a bioriented chromosome, we see that the addition of noise
causes the appearance of more in-phase oscillations at the
equator. This is due to the random variation of sensor values
which can delay the phosphorylation switch response forcing
kinetochores into in-phase movements. The noise induced



ARTICLE IN PRESS

Fig. 10. Bifurcation diagrams for a monooriented chromosome with linear load–velocity curves. Solid line depicts stable steady states, dashed line represents unstable

steady states. Filled circles represent stable periodic solutions whereas open circles represent unstable periodic solutions. (A) Steady state response of the left chromatid

position, wL as a function of the parameter k1. Inset. For a small interval of k1 close to the Hopf bifurcation point the system experiences hysteresis. (B) Steady state response

of wL as a function of the parameter K1.
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in-phase oscillations are in very good agreement with observa-
tions in Newt Lung cells (Skibbens et al., 1993).

It is important to note that noise does not affect the precise
centering of a chromosome at the equator after sensor relocation.
This can be seen from the solutions plotted in Fig. 8D where
sequential parameter variation produces solutions which are very
similar to those of the system without noise in Fig. 8B. This
implies that our biochemical feedback is robust to noise and an
appropriate control mechanism in noisy cellular environments.
3.6. Feedback is robust to parameter variation

The response of the negative feedback mechanism depends on
the value of a few key kinetic parameters. These parameter values,
however, have not been experimentally measured so it is
important to explore system robustness to parameter variations.
Since the linearized system retains qualitative behavior of the full
model we can use it to explore the robustness of the feedback and
its general dynamic properties.

In this section we investigate the behavior of our system under
variations of the dimensionless parameters: k1 ¼ kþA kFmax=m2,
K1 ¼ KA=AT ¼ KM=MT . These two parameters were chosen since
they directly control monooriented and bioriented oscillations as
follows: (1) the parameter k1 encodes the strength of position
cues into the feedback so its variation should affect system
behavior and (2) the value of K1 affects the delay in the feedback
coming from kinase/kinesin switch and consequently controls the
onset of oscillations.

In Fig. 10 we have plotted the bifurcation diagrams of a
monooriented chromosome (only one attachment at the left Kt)
with respect to the parameters k1 and K1. Oscillations are
sensitive to kinase/kinesin switch sharpness since a periodic
branch appears for a small range of K1, as seen in Fig. 10B.
However, once the value of K1 is less than K1crit the system
produces stable periodic solutions for a wide range of k14k1crit,
Fig. 10A. Clearly, as k1 increases the system becomes more
sensitive to spatial cues and a monooriented chromosome will
tend to oscillate closer to the equator. If the system is made
extremely sensitive then any amount of AP gradient will cause
even a monooriented chromosome to oscillate at the equator
(the periodic branch asymptotes to w¼ 0:5 in Fig. 10A). Thus,
the model predicts that if too much sensor (AurB) is recruited at
an attached kinetochore a monooriented chromosome can be
forced to the equator immediately without the need for
biorientation. Also observe in Fig. 10 (inset) that around the
Hopf bifurcation at k1crit the system experiences a brief hysteresis.
This arises due to the nonlinearities in the feedback mechanism.

In Fig. 11 we show the bifurcation diagram of a bioriented
chromosome which has one motor attached at each kinetochore with
respect to the variables k1;K1. Sister chromatid coupling with linear
springs introduces more complex dynamics in the system. The
variation of feedback sensitivity in Fig. 11C generates two Hopf
bifurcation points and a period doubling bifurcation for small values
of k1. The doubling of the period for k1h1ok1ok1p indicates that if
the system is made fairly insensitive to spatial cues it can take longer
for a chromatid to complete an oscillation until it stops oscillating if k1

is too small. The stable steady state branch for k1ok1h1 shows that
each kinetochore settles in a stretched position as the feedback is
being disassembled. The unstable periodic branch that appears for
this system (k14k1h2, Fig. 11A, C) shows interesting dynamic
properties, however, such behavior is due to the nonlinearity of the
system and it is of no biological consequence due to lack of stability.
Variation of K1 in Fig. 11B shows two periodic branches in the
bioriented case, however, since the second branch is not stable it does
not affect chromosome oscillation dynamics at the equator. Note that
the oscillatory domain with respect to the parameter K1 has
expanded compared to the monooriented system.

We conclude by noting that bifurcation analysis indicates
that monooriented and bioriented oscillations are robust to
parameter variations once the kinase/kinesin switch is sufficiently
sharp.
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Fig. 11. Bifurcation diagrams for the bioriented case with linear load–velocity curves. Solid line depicts stable steady states, dashed line represents unstable steady states.

Filled circles represent stable periodic solutions whereas open circles represent unstable periodic solutions. To simplify the diagram we have only shown the position of the

left chromatid, wL since the right kinetochore shows identical dynamics with positions shifted to the right due to spring separation. (A) Steady state response of the left

kinetochore position, wL as a function of the parameter k1. (B) Steady state response of wL as a function of the parameter K1.
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4. Discussion

During mitosis both mechanical forces and chemical signals
are implicated in the accurate division of chromosomes. Mechan-
ical forces directing congression arise from polar ejection forces
which increase loads on sister chromatids when poles are
approached. Several kinases localized at kinetochores are thought
to read load information and change their activation states via
phosphorylation reactions. Finally, substrates of kinetochore
kinases can alter attached kMT tip dynamics which in turn
modulates Kt velocities.

In this paper we propose a feedback control mechanism which
integrates mechanical and chemical signals at kinetochores to
recreate chromosomal movement. Even though there could be
several Kt kinases that phosphorylate/dephosphorylate in a force
dependent manner we model motility by reducing all possible
interactions into three simple reactions: a mechanical load reader
species that activates/deactivates in response to loads, a kinase that
experiences (auto)phosphorylation in response to sensor activa-
tion, and a kMT tip rate altering species that is regulated by the
kinase. Chemical species levels are introduced into a diffusive
coupler model which yields a molecular scale treatment of kMT tip
dynamics coupling to chromosomal velocities. The well observed
CPC-Aurora B-MCAK system could be the most direct representa-
tion of a possible complex network of load-sensing and kMT tip
rate modulation species. With parameters estimated from mitosis
experiments, our simple network predicts many experimentally
observed features of vertebrate chromosomal movement for both
monooriented and bioriented states. The system shows robustness
to parameter variation as well as cellular noise effects.

Previous theoretical models have successfully captured differ-
ent aspects of chromosome motility in various organisms. The
models of Joglekar and Hunt (2002) for Newt lung cells and
Civelekoglu-Scholey et al. (2006) for Drosophila embryos are
based on a force balance mechanism for chromosome motility. In
our study, we sought to combine these mechanical force effects
with local kinetochore reactions. Indeed, a force balance mechan-
ism might be sufficient to generate oscillatory behavior, however,
a kinetochore biochemical feedback mechanism might be neces-
sary to assure robust monooriented oscillations, equatorial
alignment and proper transition between different mitotic stages.

The limit cycle behavior produced by our model is different
from the response produced by a biochemical feedback control
mechanism recently proposed in Liu et al. (2008). We suspect that
these differences are more likely to occur due to the introduction
of load dependence on velocities rather than biochemical
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feedback topology differences. Consequently, we predict that the
introduction of kinetochore motors in a biochemical feedback
model can significantly affect chromosome motility.

If the biochemical feedback control we propose here indeed
controls mitotic motion then the question about its functional
significance naturally arises. Many proteins that localize at kineto-
chores are part of the spindle assembly checkpoint (SAC), a complex
quality control network which blocks anaphase until all chromo-
somes are properly attached (Ruchaud et al., 2007; Musacchio and
Salmon, 2007). There is evidence that Aurora B either directly or
through the CPC affects mitotic spindle checkpoint proteins which
build a tension sensitive SAC signal (Morrow et al., 2005; Ruchaud
et al., 2007). In our model, at the onset of biorientation each
kinetochore has different levels of the kinase A, but when the
chromosome is fully centered, bioriented sister kinetochores sensors
are fully synchronized. It could be that the presence of a feedback
mechanism with kinases like AurB allows for a chemical signal build
up to indicate that a specific chromosome is ready for separation.
How such a signal can be transduced and how tension modulates it is
not well known (Ruchaud et al., 2007; Musacchio and Salmon, 2007).
It would be interesting to investigate possible integration of
chromosomal movement with SAC dynamics.
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Appendix A

A.1. Simplifying assumptions

We model the motion of only one chromosome. In Newt Lung
cells with several chromosomes there could be interactions
between motile chromosomes. We do not take any such
interactions into account.

We assume that the biochemical reaction species are localized
at the kinetochores i.e. do not diffuse in the cytoplasm.

We assume that each kMT is attached to a pole which has a
fixed position (i.e. constant pole to pole distance). Also we ignore
any flux effects at MT minus ends.

Each coupler can only support a certain amount of load before
the attachment is lost. We can show that the coupler can support
up to 18 pN of load for the chosen parameters before the maximal
probability distributions settle outside the coupler region. Even
though the amount of force a single coupler can support is small
compared to spindle forces, since Newt Lung cell kinetochores can
bind up to 20 microtubules (Skibbens et al., 1993), a fully attached
kinetochore supports up to 360 pN of load. This load range is a
limitation of the coupler model that arises from the weak
interactions with binding sites.

Polar ejection forces are assumed to be density dependent
and thus modeled with a smooth distribution as in Joglekar and
Hunt (2002). It is likely that this force distribution varies more
with position and time, which in our context would produce less
regular oscillations. Chromosome arms contain chromokinesin
motors which are thought to contribute in the generation of polar
ejection forces. We do not directly model fluctuations in
chromokinesin motor activity.

A.2. Potential well for the motor

Note that in agreement with Hill (1985) and Joglekar and Hunt
(2002) we position the binding sites so that a fully attached
coupler binds 65 sites along 40 nm of the polymer lattice with
each site separated by d¼ 8 nm per monomer=13 protofilaments.
The equation for the well is given by,
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A.3. Cohesin spring stiffness

For our cohesin springs we used the spring coefficient
estimated by Joglekar and Hunt (2002) of :1 pN=nm and a relaxed
intra-kinetochore distance of 1mm as measured in Waters et al.
(1996). The magnitude of the spring coefficient dictates sister
kinetochore coupling during bioriented movement. We tested
several values and observed that if the spring coefficient is
lowered to 0:001 pN=nm coupling is almost completely lost with
bioriented oscillations looking like monooriented oscillations
around the equator. Higher spring coefficients (up to :2 pN=nm)
on the other hand, enhance sister chromatid coupling but also
lower oscillation amplitudes since loads are greatly increased
when a kinetochore tries to initiate movement away from the
equator. Intermediate values allow for both coupling and reason-
able amplitudes. Furthermore, we have imposed repulsion for
springs compressing more than Lk, which corresponds to a
physical barrier that does not allow chromosome arms to get
closer than what has been observed experimentally.

A.4. Chemical reaction parameter estimation

We estimated the parameters for growth and decay of S so that
the amplitude and frequency of monooriented chromosome
oscillations (which are the most regular ones) matched data from
Newt lung cells in Skibbens et al. (1993). For the kinetic
parameters of the bicyclic phosphorylation cascade we use the
values of KA, KM , kþA , k�A , k�M , kþM estimated in Tyson et al. (2003),
similar to the cascade parameters for cyclin and cdc2 kinase in
Goldbeter (1991). These parameters give the needed time delays
for chromosomal directional switches.

A.5. Congression and AP force gradient

For the simulation of the monooriented chromosome the AP
force density factor is decreased to allow the chromosome to move
close enough to the pole to which it is attached. Lower gradients
can be justified since it takes time for the astral microtubules to
grow enough to exert forces on the arms so that AP forces gain
strength as mitosis progresses. Thus, we envision this gradient to
gain strength over time. For congression the factor was increased to
allow timely equator approach. After congression is achieved the
AP gradient is increased to reach the measured value of � 100 pN
at 2mm from the equator (Brouhard and Hunt, 2005).

A.6. System with noise

To study the effects of noise we include the stochastic forcing
term xðtÞ with /xiS¼ 0, /xiðt1Þ; xiðt2ÞS¼ s2

i dðt1�t2Þ which per-
turbs the velocity of each kinetochore. The equations of motion
(1) are modified to be of the form

ndxi

dt
¼
X

FþxðtÞ: ð12Þ
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In the simulations the noise level is adjusted to be such that
si=Vmax ¼ :06, where Vmax is the effective maximal velocity the
system reaches when there is no noise.
Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2009.12.023.
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